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Abstract

In this dissertation, we present an analysis of existence, smoothing properties and
long-time behavior of solutions corresponding to wave equation with dynamic bound-
ary conditions. Different damping mechanisms acting on either the interior dynamics
or the boundary dynamics or both will be considered.
This leads to a consideration of a wave equation acting on a bounded 3-d domain,
equipped with zero-Dirichlet boundary condtions on a portion of the boundary, cou-
pled with another second order dynamics acting on a portion of the boundary. These
are general Wentzell type of boundary conditions which describe wave equation os-
cillating on a tangent manifold of a lower dimension. Both interior and boundary
dynamics are subject to viscoleastic and/or frictional dampings. Chapter 1.2 provides
the physical motivation for the model as well as mathematical background. Then,
we shall examine the regularity and stability properties of the resulting system as a
function of strength and location of the dissipation. Properties such as wellposedness
(chapter 2) of finite energy solutions, analyticity of the associated semigroup (chapter
4), strong and uniform stability (chapter 5) will be discussed.
The results obtained analytically are illustrated by numerical analysis. The latter
shows the impact of various types of dissipation on the spectrum of the generator.



This dissertation is lovingly dedicated to Julie and Lili-Rose.



Acknowledgments and Thanks

I wish to express my sincere thanks and my deepest appreciation to my advisor-
Professor Irena Lasiecka for her warm-hearted support, her persistant help and her
unvaluable guidance during these four years.

I would like to acknowledge Professor Roberto Triggiani for his advices and delightful
conversations. A special thanks goes to Mr. John Cagnol for his crucial role though-
out my education.

It is a great pleasure to thank Professor Zoran Grujic and my collegues Zachary
Bradshaw, Justin Webster, Jameson Graber, Jing Zhang, Xiang Wan, Chris Lefler
and Jason Knapp.

Lastly, and most importantly, I am truly indebted and thankful to my parents, Marie-
Christine Petit and Jean-Pierre Fourrier, for their unconditional love and support. I
would like to express my gratitude to my dear friend Olivier Picault.



i

Contents

1 Introduction 1

1.1 Physical background & literature review . . . . . . . . . . . . . . . . 2

1.2 Preliminary Insight . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2 Well-Posedness 33

2.1 Preliminary operator definitions . . . . . . . . . . . . . . . . . . . . . 33

2.2 Definition of the generator . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3 Generation of a C0-semigroup . . . . . . . . . . . . . . . . . . . . . . 40

3 Finite Element Methods 47

3.1 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.1.1 Spectral Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.1.2 Spatial discretization . . . . . . . . . . . . . . . . . . . . . . . 52

3.2 Error Estimates for (VM) and (VM) models . . . . . . . . . . . . . 57

3.2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2.2 Definitions and Notations . . . . . . . . . . . . . . . . . . . . 59



ii

3.2.3 Wave equation with Frictional damping (FM) . . . . . . . . . 61

3.2.4 Wave equation with viscoelastic damping (VM) . . . . . . . . 69

4 Spectral Properties and Regularity of the Semigroup 73

4.1 Analytic Semigroup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.1.1 Resolvent approach . . . . . . . . . . . . . . . . . . . . . . . . 76

4.1.2 Perturbation approach via Wentzell semigroup . . . . . . . . . 79

4.2 Gevrey Semigroup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.3 Spectral analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5 Stabilization and Uniform Decay Rates 110

5.1 Exponential Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.2 Strong Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6 Optimal growth bound 126

6.1 Impact of each damping mechanism . . . . . . . . . . . . . . . . . . . 128

6.2 Optimal growth bound . . . . . . . . . . . . . . . . . . . . . . . . . . 131

Bibliography 133



List of Figures

1.1 Impact of the frictional damping on the spectrum. . . . . . . . . . . . 16

1.2 Spectrum with only frictional boundary damping: effect of inertial

boundary term utt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.3 Theoretical eigenvalues for a 2-dimensional wave equation with vis-

coelastic damping kΩ = 0.1 and 0-Dirichlet boundary conditions. . . . 19

1.4 Effect of viscoelastic damping on the spectrum. . . . . . . . . . . . . 20

1.5 Eigenvalues for model (VM) with viscoelastic damping only on the

boundary kΓ, α > 0 and kΩ = 0 . . . . . . . . . . . . . . . . . . . . . 21

3.1 Domain Ω with active boundary Γ1 and 0-Dirichlet boundary Γ0 . . . 48

3.2 Typical rectangular element of size a× b and corresponding Lagrange

interpolation functions ({Φe
k}4k=1) in local coordinate system . . . . . 54

4.1 Spectrum of a strongly damped wave equation with DBC without

Laplace Beltrami term on the boundary. . . . . . . . . . . . . . . . . 91

4.2 Spectrum for a Gevrey semigroup . . . . . . . . . . . . . . . . . . . . 93

iii



iv

5.1 Diagram: Relationship between exponential stability and analyticity . 112

5.2 Spectrum of a non-exponentially / strongly stable semigroup I . . . . 120

5.3 Spectrum of a non-exponentially / strongly stable semigroup II . . . 121

5.4 Effect of the boundary mass coefficient on the spectrum of an damped

wave equation with DBC . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.5 Effect of the boundary frictional damping . . . . . . . . . . . . . . . . 125

6.1 Optimal spectral bound for a hyperbolic system . . . . . . . . . . . . 130

6.2 Optimal growth bound for an analytic semigroup . . . . . . . . . . . 133

6.3 Optimal growth bound for a Gevrey semigroup . . . . . . . . . . . . 134



1

Chapter 1

Introduction

The purpose of this dissertation is to study a model of damped wave equations with

dynamic boundary conditions. We consider the following system:






utt + cΩut − kΩ∆ut −∆u = 0 x ∈ Ω, t > 0

u(x, t) = 0 x ∈ Γ0, t > 0

utt + cΓut + ∂n(u+ kΩut)− kΓ∆Γ(αut + u) = 0 x ∈ Γ1, t > 0

u(0, x) = u0, ut(0, x) = u1 x ∈ Ω

(GM)

where u = u(x, t), t ≥ 0, x ∈ Ω is a bounded domain in Euclidiean space with bound-

ary ∂Ω = Γ0 ∪ Γ1 and Γ0 ∩ Γ1 = ∅; ∆ denotes the Laplacian operator with repect to

the space variable x; ∂n denotes the outer normal derivative; ∆Γ denotes the Laplace-

Beltrami operator on the boundary Γ1 with repect the variable x; cΩ, cΓ, kΩ, kΓ and

α are non-negative constants.
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1.1 Physical background & literature review

A classical and common approach to study partial differential equations, in partic-

ular wave equations, is to study them with homogeneous boundary conditions such

as Dirichlet, Neumann or Robin. However, in many applications one has to also

consider the dynamic behavior of the boundary which can be a wall for instance in

response to the acoustic waves. This study fits into the research done during the last

decades which consists in developing a mathematical theory of dynamic boundary

conditions. It covers different sort of differential equations: elliptic equations (see

e.g. [1, 29, 36, 53]), parabolic equations (see e.g. [17]) and second order hyperbolic

equations (see e.g. [5]). It is now studied through the semigroup theory (see e.g.

[11, 15, 19]) and also in a more abstract approach (see e.g. [47, 48]). From the

mathematical point of view, these problems do not neglect acceleration terms on the

boundary and were first introduced by Beale-Rosencrans, in [5, 6, 7], describing this

acoustic/structure interaction by a wave equation with acoustic boundary conditions.

Based on Beale-Rosencrans’ work, several authors studied similar problems of wave

equations with a dynamic behavior of the solution on the boundary, see for instance:

[19, 20, 23, 25, 27, 30], we shall discuss some of these results later as a preliminary

to this study. Moreover, the acoustic or dynamic boundary conditions find numerous

of applications in the bio-medical domain [10, 59], as well as in applications related

to stabilization and active control of large elastic structures. See [45] and references

therein for some applications.



3

The common denominator for all these studies is the physical motivation intro-

duced by Morse-Ingard [46]. In order to present a complete study of the model (GM),

it is necessary to review a couple of concepts in physics to connect the physical and

mathematical description of this model. We start with a non-viscous fluid, which in

the absence of sound is at rest with 0-heat conductivity. We denote by ρ, P and T the

uniform density, pressure and temperature respectively which become, once a wave

is introduced, ρ+ δ(x, t), P + p(x, t), T + τ(x, t). The motion of fluid is induced by a

change in pressure, also called the acoustic. The motion of the fluid is responsible for

the change in density through the following formula:

δ(x, t) = ρκp(x, t) (1.1.1)

where κ denotes the adiabatic compressibility. It corresponds to the variation of

volume under some pressure given a constant entropy.

We now recall a basic definition which will allow us to obtain the wave equation.

Consider any quantity f of the fluid at position r = (x, y, z), time t and define the

fluid veolocty at r and t by v = (vx,vy,vz). Then, the total time derivative f(r, t)

is:

df

dt
dt = f(r + v dt, t+ dt)− f(r, t)

= f(r, t) +

(
vx
∂f

∂x
+ vy

∂f

∂y
+ vz

∂f

∂z

)
dt+

∂f

∂t
dt− f(x, t)

=
∂f

∂t
+ v.∇f

(1.1.2)
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where v.∇f measures the rate of change of f at point r, time t caused by the fluid

flow. We also introduce the notion of the flux of a fluid which is the total amount

of property f passing per second across a unit cross-sectional area normal to the

direction. In particular, for any property f travelling with the fluid, the flux of f is

defined by:

J(x, t) = f × v (1.1.3)

To illustrate this concept, consider a volume element dx dy dz, then the flux Jx(x)

(x-component of J(x)) is a gain while Jx(x + dx) is a loss of f . Therefore, the net

flux out the volume dx dy dz passing across the cross-section dy dz is

dy dz (−Jx(x+ dx) + Jx(x))dx = −dy dz ∂Jx

∂x
dx

Thus the total net flux out is:

dy dz
∂Jx
∂x

dx+ dx dz
∂Jy
∂y

dy + dx dy
∂Jz
∂z

dz = div Jdx dy dz (1.1.4)

In addition, suppose that f is created at a rate Q(r, t) per unit volume of fluid, then

the net rate of change f within the volume dx dy dz is equal to what has been created

minus the net flux out:

∂f

∂t
dx dy dz = Qdx dy dz − div Jdx dy dz

Combining (1.1.2) and (1.1.3), we obtain the general equation of continuity:

df

dt
= Q− fdiv v (1.1.5)
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Note that any increase of f in a region must have been brought there by fluid flow or

else by specific creation (Q(r, t)).

The equation of continuity for the density ρ+ δ is:

d(ρ+ δ)

dt
= −(ρ+ δ)div v

⇒ ∂δ

∂t
+ v.∇δ = −(ρ+ δ)div v by equation (1.1.2)

Then by applying (1.1.1), we obtain the equation of continuity for the pressure:

ρκ
∂p

∂t
= −ρ(1 + κp)div v − ρκ(v.∇p) (1.1.6)

On the other hand, observe that for a mass of fluid (ρ+ δ)dx dy dz the change in

force in the volume dx dy dz is p(x, y, z)−p(x+ dx, y+ dy, z+ dz) = −∇pdx dy dz .

By the second’s law of Newton, we obtain the equation of motion:

(ρ+ δ)dx dy dz
dv

dt
= (ρ+ δ)

[
∂v

∂t
+ v.∇v

]
dx dy dz = −∇pdx dy dz

which becomes after simplification:

(ρ+ δ)

[
∂v

∂t
+ v.∇v

]
= −∇p (1.1.7)

We choose to derive the wave equation for the velocity for matter of simplicity, how-

ever note that one could easily derive the wave equation for the pressure, the velocity

potential, the height of the wave or any other property. For our need, i.e., a math-

ematical study of wave equations one can neglect the effects of thermal conduction
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or change of compressibility with pressure, thus it is enough to consider to the first

order the equation of continuity (1.1.6) and the equation of motion (1.1.7):




ρ∂v
∂t

= −∇p

κ∂p
∂t

= −div v

(1.1.8)

The first of these equations states that a velocity gradient produces a compression of

the fluid; the second states that a pressure gradient produces an acceleration of the

fluid.

Applying time derivative operator to the first equation and using the second to elim-

inate p, we get the wave equation for the velocity:

{
κρ∂2

v

∂t2
= ∆v (1.1.9)

In model (GM), we have such a wave equation acting in the interior domain Ω

(plus additional terms which we shall discuss later) inside a bounded domain. Once

the incident wave strikes a surface of the boundary, the pressure of the incident wave

does not make move the mass load of the surface instantanously, making the reflecting

pulse unchanged. However, the impulse absorbed tends to create a damped oscillation

first receding from the flow. More precisely, the acoustic pressure p interacts with

the surface, either by forcing more fluid into its pores or by making the surface

move. If we assume that the fluid can move in the direction normal to the surface,

a wave motion will be induced in the material forming the surface. The relationship

between the motion of two points of the surface can be determined by the wave motion

inside the material as well as by the incident and reflected waves. As a consequence,
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imposing classical boundary conditions (Dirichlet, Neumann or Robin type) to the

wave equation would not be appropriate as it would not describe such a behavior on

the boundary.

Furthermore, if the different components of the surface are not strongly coupled

together, it is commonly assumed that the motion of the surface or the motion of

the fluid into the surface pores at a given point is only determined by the acoustic

pressure at that point and not anymore by the motion of any other portion of the

surface. When this is the case, we say that the surface is one of local reaction. For

small amplitudes, one can assume that:

• the relationship between surface motion and pressure is linear,

• the pressure is proportional to the velocity normal,

• the surface motion is not affected by tangential fluid motion.

Under these assumptions each point of the reflecting surface acts like a simple-harmonic

oscillator, thus by the Hooke’s law, the acceleration is proportional to the displace-

ment meaning that the corresponding boundary conditions must be of the form

utt + ut + u = 0. The first mathematical model for surface of local reaction was

introduced by Beale-Rosencrans, in [7]. The authors described the acoustic/structure
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interaction by a wave equation with acoustic boundary conditions:




utt −∆u = 0, x ∈ Ω, t > 0

u(x, t) = 0, x ∈ Γ0, t > 0

m(x)δtt ++d(x)δt + k(x)δ = −ρ∂nut, x ∈ Γ1, t > 0

δt = ∂nu, x ∈ Γ1

u(0, x) ∈ H1(Ω), ut(0, x) ∈ L2(Ω), x ∈ Ω

z(0, x) ∈ H1(Ω), zt(0, x) ∈ L2(Ω), x ∈ Ω

(1.1.10)

In [5, 6], they demonstrated that the problem was governed by a C0-semigroup of

contractions. In [27] (and references therein) the authors pointing out long time be-

havior and continuous dependance of solutions on the mass of the structure. With

a more abstract approach, Mugnolo, in [47, 48] proved generation and regularity of

semigroup for coupled systems of a wave equation with acoustic boundary conditions

similar to (1.1.11). His work was initiated by Casarino’s work (see [11]) on a heat

equation with acoustic boundary conditions.

Inspired by model (1.1.10) which descibes the interaction between interior and bound-

ary dynamics by a coupled system, surface of local reaction have been intensively

studied for the last decade as a wave equation with dynamic boundary conditions:




utt − kΩ∆ut −∆u = f1(u) x ∈ Ω, t > 0

u(x, t) = 0 x ∈ Γ0, t > 0

utt + ∂n(u+ kΩut) + ρ(ut) + f2(u) = 0 x ∈ Γ1, t > 0

u(0, x) = u0, ut(0, x) = u1 x ∈ Ω

(1.1.11)
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Remark 1.1.1. What distinguishes our model (GM) from (1.1.11) is the presence

of Laplace-Beltrami operator in the dynamic boundary condition.

Gerbi and Said-Houari in [24, 25] studied the problem (1.1.11) with f2 = 0, f1(u) =

|u|p−2u and a nonlinear boundary damping term of the form ρ(ut) = |ut|m−2. A

local existence result was obtained by combining the Faedo-Galerkin method with

the contraction mapping theorem. The authors also showed that under some restric-

tions on the exponents m and p, there exists inital data such that the solution is

global in time and decays exponentially. Graber and Said-Houari in [28] extended

some of these results to more general function f1 and f2. They also demonstrate

that for ρ = f2 = 0, the model (1.1.11) was governed by an analytic semigroup on

H1
Γ0
(Ω)× L2(Ω)× L2(Γ1).

Not only wave equation with acoustic boundary conditions (Beale’s model (1.1.10))

and wave equations with dynamic boundary conditions (model (GM) and (1.1.11))

describe similar physical phenomenons but they also coincide with the so-called

Wentzell boundary conditions given conditions on the parameters ([23]). Such bound-

ary conditions involve second derivatives as well as lower order terms (Robin type)

and Laplace-Beltrami terms and were intensively studied by Favini, Goldstein, Gal

et al., in [19, 20] and references therein, in the context of hybrid problems. Firstly,

this group started to study the Wentzell boundary conditions with a heat equation,
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in [19]:

ut = ∆u t ≥ 0, in Ω (1.1.12)

∆u+ β∂nu+ γu = 0 on δΩ (1.1.13)

Although Wentzell boundary conditions were usually studied in spaces of continuous

functions, the authors presented a new framework involving weighted Lp spaces using

both the domain and the boundary. This framework was used in most of the studies

mentioned above about the model (1.1.11). It will also be used and discussed in chap-

ter 4. Gal, from the same group, applied the Wentzell boundary conditions (equation

(1.1.13)) to the wave equation and establish that the generators of the contraction

C0-semigroups governing the wave equation with GWBC and the wave equation with

acoustic boundary conditions (1.1.10) only differ by an operator which is self-adjoint

and bounded on the appropriate energy space ([23, theorem 4.1]). Other papers used

this framework to study one-dimensional wave equation without internal damping,

with Wentzell boundary conditions, see [2, 18, 60].

A fundamental extension of the initial paper [19] was made in 2010 by Favini et al. also

[20]. The authors introduced a Laplace-Beltrami term in the Wentzell boundary con-

ditions (1.1.13), which we shall now call the General Wentzell Boundary Conditions

(GWBC). In both papers [19, 20], the authors showed that the associated semigroup

was analytic on the weighted Lp space. It is one essential aspect of this study to

understand how the introduction of this Laplace-Beltrami term on the boundary is



11

affecting the general dynamic of the system.

The introduction of the Laplace-Beltrami term on the boundary is also relevant

from the physical point of view. Although many surfaces react to sound waves, at

least approximately, as though each portion of the surface responded to local pressure

without knowledge of motion elsewhere (i.e., in the absence of Laplace-Beltrami term

on the boundary), many surfaces do not react so. For instance, one can think of a

plane separating two fluids or surrounded by fluids. When the surface behavior at

one point depends on the behavior at neighboring points, so that the reaction is dif-

ferent for different incident waves, the surface can be called one of extended reaction.

Such surfaces are of many sorts: one which behaves like membranes and one with

laminated structure, in which waves are propagated parallel to the surface; one in

which waves penetrate into the material of the wall. From the mathematical point of

view, it means that the boundary condition are more complex than a simple harmonic

oscillator, i.e., the acceleration is not proportional to the displacement anymore but

to the relative displacement compared to its neighbours, in other words, such as a

classical wave equation: utt−∆u = 0. Note that the Laplace operator on the bound-

ary is not the same as the one in the interior. Thus, we denote the Laplace-Beltrami

operator acting on the boundary Γ1 on the tangential direction by ∆Γu.

The last aspect to describ in the model (GM) is the damping mechanisms. From
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the mathematical point of view, undamped wave equations are well-posed in an Lp-

setting if and only if p = 2 or the space dimesion is 1 ([37]), it is well-known that the

strongly damped wave equation under classical boundary conditions such as Dirichlet

or Robin generates an exponentially stable analytic C0-semigroup [12]. In fact, this

results is known for a larger class of scalar problems where viscoelastic damping

is given in a form of fractional powers of Laplacian [12, 13]. In this context, the

study seeks to establish various results about the regularity and the stability of the

semigroup. From the physical point of view, the natural physical behavior of waves

propagating in a closed domain automatically provides one or several damping forces.

Therefore, in order to ensure the presence of damping and thus energy dissipation in

this system, we impose the following condition:

max{kΩ, kΓα, cΩ, cΓ} > 0 (1.1.14)

System (GM) models energy dissipation through two different phenomenons. The

first damping considered is the frictional one. Although friction is commonly defined

as the resistance to motion which the air surrounding the body manifests, energy in

the form of sound waves being sent out into the air can still be considered as friction

for the energy of the system diminishes, being drained away in the form of sound, the

amount depending on the radiation resistance of the medium. This resisting force

depends on the velocity of the vibrator, and unless the velocity is large, it is propor-

tional to the velocity: cΩut where the constant cΩ is the resistance constant. The

second category of damping models viscoelastic type behavior, where part of the sys-
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tem’s energy goes into heating the medium, the amount depending on the viscosity

of the medium. In such a case, the stress is proportional to the strain rate and is

represented by kΩ∆ut.

Analogously, boundary dissipation can be defined and is modeliezed by frictional and

viscoelastic dampings terms: cΓut and kΓα∆Γut respectively.

With the above motivation in mind, we now define the core mathematical ques-

tions to be addressed in this work:

• Does there exist a unique solution to (GM) which is continuous in time and

depends continuously on the initial conditions ?

• Does the energy of solutions to (GM) decay asymptotically to zero as time

approaches infinity ?

• Under which assumptions does this model provide exponential stability ?

• Does the solution to (GM) enjoys regularity properties ?

We will answer all of these questions identifying the role of each term by setting

different values for the parameters kΩ, cΩ, kΓ, cΓ, α. This will provide a rigorous

mathematical understanding of a wide range of possible acoustic/structure interaction

submodels present in (GM). Because the analysis (and results to follow) are highly

dependent upon parameter values, damping mechanisms, it is neither reasonnable nor

beneficial to the reader to have an entire linear discussion of well-posedness, regularity
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and long-time behavior results. For this reason, we divided the dissertation into six

chapters, each enlighting an important characteristic of system (GM), but often

relying on previous results.

In chapter 2, we address well-posedness considerations for the model (GM) in

the appropriate energy space. Well-posedness was previously established for few

particular cases of our model such as in the absence of Laplace-Beltrami terms on the

boundary (kΓ = 0) [28]. It is one aim of this dissertation to generalize well-posedness

results for (GM) under semigroup theory with the Lumer-Philips theorem [44].

For the following chapters, two submodels will often be distinguished from (GM)

(i) to isolate, and thus (ii) to have a better understanding of, phenomenons caused

by the viscoelastic or frictional dampings. First, we consider a wave equation with

dynamic boundary conditions with only frictional damping on the interior and/or the

boundary: 



utt + cΩut −∆u = 0 x ∈ Ω, t > 0

u(x, t) = 0 x ∈ Γ0, t > 0

utt + cΓut + ∂nu− kΓ∆Γu = 0 x ∈ Γ1, t > 0

u(0, x) = u0, ut(0, x) = u1 x ∈ Ω

(FM)

In other words, the coefficients attached to the viscoelastic damping on the interior

kΩ and on the boundary α are null. It is well known that a wave equation with

a frictional damping and 0-Dirichlet boundary conditions (Γ1 = ∅) leads to a C0-

semigroup of contraction with exponential stability. The spectrum of this semigroup
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is a vertical asymptote vertical asymptote, for which all the eigenvalues have real

part −cΩ, whenever 0 < cΩ ≤ 2, i.e., as the damping coefficient increases to 2, the

vertical asymptote moves away from the imaginary axis. It can actually be shown

that the stability is optimal for cΩ = 2 which often goes by critical damping. We

leave to the reader the proof, and recall that for any cΩ > 2, the first conjugate

eigenvalues become real, and one goes to −∞ while the other one moves back to the

imaginary axis. Such a situation is commonly called overdamping, which means that

the exponential stability property is still holding but the decay is not as quick as for

the critical damping (cΩ = 2). Note that in the literature, the friction coefficent is

often defined by cΩ = 2ρ, as a consequence, the critical damping would be reached at

ρ = 1. Among the cases we will study, figure 1.1 represents the spectrum for model

(FM) with different values of cΩ and cΓ, with the additional condition cΩ = cΓ, it

enlights that the eigenvalues also form a vertical asymptote, as well as the presence

of a critical situation also reached at cΩ = cΓ = 2, represented in blue, since some

eigenvalues once they hit the real axis (for cΩ = cΓ > 2) move back to the imaginary

axis. Indeed, figure 1.1 also shows the track (red lines from right to left) followed

by each eigenvalue as the coefficients cΩ and cΓ increase from 1 to 3, represented in

red. Note that one would get a very similar picture in the case Γ1 = ∅ previously

described. In addition, the presence of vertical asymptote does not suggest that the

semigroup could become analytic; we will show that the semigroup in this case is also

one of contraction (chapter 2) with exponential stability (chapter 5).
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Imaginary Axis

Real Axis   

8.3i

0−1.6







utt + cΩut =∆u on Ω

utt + cΓut +
du
dη

− kΓ∆Γu = 0 on Γ1

u = 0 on Γ0

kΓ = 1

cΩ = 1 → 3

cΓ = 1 → 3

kΓ = 1

cΩ = 2

cΓ = 2

Critical Damping

Figure 1.1: Impact of the frictional damping on the spectrum.. Eigenvalues for the

model (FM) (kΓ = 1) with the damping coefficients cΩ and cΓ running from 1 to 3

(in red) and a critical-like damping reached at cΩ = cΓ = 2 (in blue).

However, under other settings of coefficients, the exponential stability might not hold

anymore. For instance, if there is no damping in the interior (cΩ = 0), one could

wonder how the boundary damping would control the general dynamic of the sys-

tem. Figure 1.2 represents this exact scenario. The spectrum contained two distinct

components, the first one in the middle of the figure is an asymptotic-shape related

to the damping force on the boundary. The second component is closed to imagi-

nary axis and corresponds to the interior dynamics. Such a case is more complicated

to treat, and the theoretical approach will help us to interpret the numercial results.
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kΓ = 1

cΩ = 0

cΓ = 5

Imaginary Axis

Real Axis   

14i

0−2.5







utt + cΩut =∆u on Ω

utt + cΓut +
du
dη

− kΓ∆Γu = 0 on Γ1

u = 0 on Γ0

Figure 1.2: Spectrum with only frictional boundary damping: effect of inertial bound-

ary term utt. Eigenvalues for the model (FM) in the absence of interior damping.

(cΩ = 0, cΓ > 0 and kΓ = 1)

We are also interested in the behavior of the system (GM) under pure viscoelastic

damping, i.e., the frictional dampings are null: cΩ, cΓ = 0.






utt − kΩ∆ut −∆u = 0 x ∈ Ω, t > 0

u(x, t) = 0 x ∈ Γ0, t > 0

utt + ∂n(u+ kΩut)− kΓ∆Γ(αut + u) = 0 x ∈ Γ1, t > 0

u(0, x) = u0, ut(0, x) = u1 x ∈ Ω

(VM)

We shall start by placing this model within existing result about the strong damped
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wave equation with 0-Dirichlet boundary conditions. This can be represented by the

model (VM) under the following setting: Γ0 = δΩ, Γ1 = ∅ and kΩ = 1. Chen and

Triggiani in [12, Appendix A] derived an explicit formula for the eigenvalues {λn}n∈Z

given by:

λ+,−
n = µn

(
−kΩ

2
±
√
k2Ω
4

− µ−1
n

)

where {µ}∞n=1 are the eigenvalues of ∆

The spectrum (figure 1.3) formed by these eigenvalues is a common pattern for ana-

lytic semigroup and will reappear in several scenarii of this study. The first eigenvalues

are conjugate pairs running over a circle of radius 1
kΩ

with center at − 1
kΩ

+0×i. Then,

for all n such that k2Ω > µ−1
n each conjugate pair splits: λ+n tends to an accumulation

point at the center − 1
kΩ

of the circle while λ−n goes to negative infinity as n increases.

Such a spectrum can be enclosed inside a triangular sector confirming the analyticity

of the associated semigroup, and the absence of eigenvalues on the imaginary axis

confirms the exponential stability.

Adding dynamic boundary conditions on a portion of ∂Ω (on Γ1) bring into question

the persistence of these stability and regularity properties. Before giving the details

in chapters 4 and 5, we can partially answer to this question, by considering the model

(VM) with damping in the interior and on the boundary (kΩ, kΓ, α > 0), we recover a

similar spectrum suggesting similar properties (analyticity and exponential stability),
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Imaginary Axis

Real Axis   

3i

0−14

Accumulation Point

1
kΩ

{

utt − kΩ∆ut −∆u = 0 on Ω

u = 0 on δΩ

Figure 1.3: Theoretical eigenvalues for a 2-dimensional wave equation with viscoelas-

tic damping kΩ = 0.1 and 0-Dirichlet boundary conditions.

see figure 1.4. In addition this figure illustrates how the viscoelastic damping interacts

with the eigenvalues: as the damping coefficients (kΩ and α) increase, the radius of

the circle decreases while the high frequency mode hits the real axis.

Remark 1.1.2. It is not the aim of this dissertation to establish a relationship be-

tween the interior and boundary viscoelastic dampings (kΩ - α). Thus, whenever both

coefficients are non-zero, we set them equal so that the circles formed by the eigenval-

ues coming from the interior and the boundary coincide providing a better readability

of the figures. Otherwise, we would notice two distinct circles.

However, when one of these two damping is dropped to 0 (kΩ = 0 or α = 0),



20

Imaginary Axis

12i

0

kΩ,α = 0 → 0.2

kΩ,α = 0.1

Figure 1.4: Effect of viscoelastic damping on the spectrum.. Eigenvalues for the model

(VM) with viscoelastic damping both on the interior and the boundary (kΩ, kΓ, α >

0). In red, tracks followed by each eigenvalue as kΩ, kΓα = 0 (black dots along the

imaginary axis)→ 0.2 (black dots forming a circle). In blue, eigenvalues for the case

kΩ = kΓα = 0.1.

the spectrums are not easy to interpret anymore. For instance, in the absence of

interior damping, we still observe a circle-shape component in the spectrum due to



21

the damped wave equation on the boundary, but a new component appears along the

imaginary axis, which is critical not only for the solution’s stability but also for its reg-

ularity. Indeed, figure 1.5 suggests that the semigroup could not be analytic anymore

and the exponential stability property should also be questionned. Eventually, we

Imaginary Axis

Real Axis   

16i

0−4.6







utt − kΩ∆ut −∆u = 0 on Ω

utt +
δ(kΩut+u)

δη
− kΓ∆Γ(αut + u) = 0 on Γ1

u = 0 on Γ0

kΩ = 0

kΓ = 2

α = 0.02

Figure 1.5: Eigenvalues for model (VM) with viscoelastic damping only on the bound-

ary kΓ, α > 0 and kΩ = 0

will also study cases where we have mixed damping under our general model (GM),

i.e. viscoelastic damping on the boundary with frictional damping in the interior and

vice versa.

The four figures presented in this introduction does not cover all possible scenarii of

the system (GM), however they provide a good overview of the results one can expect
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when studying the regularity and the stability of a differential equation’s solution.

Altough, they do not demonstrate any results of course, they add a significant benefit

by illustrating the theoretical results obtained through this study. Since proving that

certain properties does not hold is very challenging, these numerical approximations

are also beneficial, as they suggest that the theoretical results were the best one can

expect.

In chapter 3, we define and describe the numerical scheme built with Matlab, using

the finite element methods. The discretization of the model (GM) has allowed to

obtain the previous pictures as well as the other numerical observations and results

in this dissertation. Finite elemnt method (FEM) is one of the most important

tool in industry to study dynamic systems and the governing differential equations.

The numerical framework was established following the Galerkin method on a two-

dimensional plate with square elements, piecewise linear polynomials. As it was

already done in the previous paragraph, the present study is written in a way that

the numerical and theoretical results interact together as much as possible so that the

approach to understand this model is not only from one point of view, but from both

numerical and mathematical point of view. This approach to be relevant requires a

precise definition of the numerical scheme, which is the purpose of the first part in

chapter 3. In the second part, we derive error estimates for the models (VM), (FM).

This will provide the justification for the reliability of the numerical schemes defined.
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Indeed, error estimates make the link between the continuous and discretized model

as they define a ’well-posedness’ concept for a numerical model, by describing how far

the approximate solution is from the exact solution, in other words, it measures the

rate of convergence of the approximate solution to the exact solution. The literature

for finite element methods is heterogeneous and only a few covers a wide range of

differential equations with sufficient mathematical justificiation, therefore, we restrict

our attention to few important references [14, 52]. Also, Thomée offers in [56] a wide

range of error estimates technics for classical parabolic and hyperbolic problems such

as the heat equation with 0-Dirichlet boundary conditions. Classically, convergence

arguments rely on the defintion of a discrete operator projecting the exact solution

onto the finite element space. Then using the projection, the convergence is reduced

to the verification of the two properties:

• the consistency: the convergence of the projection toward the exact solution

• the stability: the convergence of the approximate solution to the projection

which verifies that the projection does not amplify noise

In chapter 4 and 5 we study how the dynamic boundary conditions on Γ1 affect

qualitative properties of the resulting semigroup that include regularity (chapter 4)

and long time behavior with the analysis of various types of stability (chapter 5). It is

well known that the presence of a damping impacts these two properties. Sufficient

amount of dissipation in the system may provide not only strong decays of the energy



24

when time t→ ∞, but also may regularize semigroup by providing more smoothness

to the solutions. The first part of chapter 4 shows that the semigroup can reach a

maximum regularity if viscoelastic damping is present both in the interior and on the

boundary. Then, we will see that the regularity drops to Gevrey class if the boundary

wave is not strongly damped. In the last part, we demonstrate that the spectrum of

the Cauchy operator associated with (GM) does not intersect with the imaginary axis,

provided damping in the system. This spectral property allows a smooth transition

to chapter 5 in which we will be interested in the stabilization of the model (GM).

Within this framework, we will be able to assert and prove that each inital state

in the H decays asymptotically to the zero state. We will in addition demonstrate

that the solutions decay at an exponential rate, for most scenarii, as one can expect.

Finally, we will study the few scenarii for which only strong stability is possible. For

instance, in absence of internal damping (kΩ, cΩ = 0), the viscoelastic damping on

the boundary (kΓα > 0) will not be sufficient to obtain exponential stability. This

general problem is, of course, not new and goes back to the fundamental work by

Littman-Markus [39, 40, 42] where ”hybrid ” systems of elasticity were studied. It

was then discovered that an addition of a lower dimensional dynamics may destabilize
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the system. For instance, it was shown in [38] that the hybrid system:





utt −∆u = 0, x ∈ Ω, t > 0

u(x, t) = 0, x ∈ Γ0, t > 0

mutt + ∂n(u+ kΩut) = 0, x ∈ Γ1, t > 0

u(0, x) ∈ H1(Ω), ut(0, x) ∈ L2(Ω), x ∈ Ω

with m > 0 is not uniformly stable, while the case when m = 0 is exponentially stable

assuming suitable geometric conditions imposed on Ω [34].

Besides determining the condition under which the system (GM) is exponentially

stable (chapter 5), we will also approximate numerically the growth bound, or in other

words, how fast the solution decays, in chapter 6. More precisely, in the context of a

better understanding the damping mechanisms, we will investigate which conditions

is the dissipation maximum.

Whenever the model (GM) is parabolic (kΩ > 0), we can estimate the growth bound

by determining the approximate spectral bound. However, for hyperbolic systems of

dimensions greater or equal than 2, there are counterexamples ([31, 50] and references

therein) where this approach does not hold anymore. In particular, in [50], the author

provides a couterexample for a first order perturbation of the wave equation in two

dimensions.
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1.2 Preliminary Insight

Our aim is to provide a comprehensive study for the model (GM) of (i) wellposed-

ness (chapter 2), (ii) regularity (chapter 4) and (iii) stability (chapter 5) of solutions

under the influence of competing both interior and boundary dampings. In order

to quantize the analysis we derive formal energy estimate which are the core of any

analysis of a dynamical system. With respect to this energy we are interested in the

well-posedness and stability of solutions (u|Ω, ut|Ω, u|Γ1
, ut|Γ1

)T to (GM), along with

the decay of the energy E(t) of (GM) at t→ ∞.

We first introduce notational conventions which we will used throughout the dis-

sertation.

Definition 1.2.1. (., .)Ω is the inner product on L2(Ω) and |.|2Ω is the corresponding

norm, 〈., .〉Γ1
is the inner product on L2(Γ1) and |.|2Γ1

is the corresponding norm;

unless otherwise specified by another subscrip, e.g. ‖.‖H1

Γ0
(Ω) is the H1

Γ0
(Ω) norm.

We begin with the definition of energy functions representing both internal and

boundary structural energy of the system (GM).

E(t) = EΩ(t) + EΓ(t)

EΩ(t) =

∫

Ω

|∇u(t)|2 + |ut(t)|2dΩ

EΓ1
(t) =

∫

Γ1

kΓ|∇Γu|Γ1
(t)|2 + |ut|Γ1

(t)|2dΓ1

(1.2.1)
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Notice that there is a natural energy dissipation coming from both the boundary and

the interior. Define the dissipation of the system (GM) by D(t):

D(t) =

∫

Ω

cΩ|ut(t)|2 + kΩ|∇ut(t)|2dΩ +

∫

Γ1

cΓ|ut|Γ1
(t)|2 + |kΓα|∇Γut|Γ1

(t)|2dΓ1

(1.2.2)

The total energy in the system (GM) is classically obtained by multiplying by ut and

integrating in time, so we have the following formal energy identity:

E(0) = EΩ(t) + EΓ1
(t) + 2

∫ t

0

D(s)ds

= |∇u(t)|2Ω + |ut(t)|2Ω + kΓ
∣∣∇Γu|Γ1

(t)
∣∣2
Γ1

+
∣∣ut|Γ1

(t)
∣∣2
Γ1

+ 2

∫ t

0

cΩ |ut|2Ω + kΩ |∇ut(s)|2Γ1
+ cΓ

∣∣ut|Γ1
(s)
∣∣2
Γ1

+ kΓα
∣∣∇Γut|Γ1

(s)
∣∣2
Γ1

ds

(1.2.3)

The above energy identity (1.2.3) suggests that the energy is decreasing. However,

how fast, it needs to be determined. The energy balance also suggests that there is

an extra regularity in the damping. How this regularity is propagated onto the entire

system is a question we aim to resolve.

Even though most studies [19, 20, 23, 25, 27, 30] use the same approach as the one

we follow in this dissertation to treat similar systems, the model under consideration

(GM) can be recast and studied in the abstract form as:





utt = Au(t) + Cut(t)

wtt = B1u(t) +B2ut(t) +B3w(t) +B4wt(t)

(1.2.4)
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where the operators A,C,Bi, i = 1−4 satisfy suitable conditions and variables u and

w are connected via ”trace” type operator L so that w = Lu. In fact, this is the

framework pursued by Mugnolo in [48]. Before presenting our results for (GM), it is

essential understand the relevance of Mugnolo’s results and determine whether they

cover our model. A priori, the answer is not obvious as the conditions for generation

and analyticity of the semigroup require a preliminary work to adapt (GM) into

Mugnolo’s approach and notation.

Firstly, the second order abstract system (1.2.4) is reformulated as an abstract sec-

ond order Cauchy problem on the product space X × ∂X in the variable U(t) ≡

(u(t), Lu(t)) satisfying

Utt = AU(t) + CUt(t), t > 0 (1.2.5)

on a product space X = X × ∂X where

A ≡



A 0

B1 B3


 , C ≡



C 0

B2 B4




are operator matrices on X with suitably defined domains. We also mention that

a similar approach was used by Xiao et al. in [61, 62], where boundary conditions

were reformulated as differential inclusions in suitable equivalence classes. The above

formulation can be further reduced to first order Cauchy problem by introducing
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variable u ≡ (U, Ut) and writing

ut(t) = Au(t)

where A ≡




0 I

A C




(1.2.6)

where the domain of A is:

D(A) = {(u, x, v, y)T ∈ D(A)×D(B3)×D(C)×D(B4) : Lu = x, Lv = y}

and the energy space is defined by

X = {(u, x)T ∈ Y × ∂Y : Lu = x} ×X × ∂X

A comprehensive study of well-posedness and regularity of second order evolutions

(1.2.5) is given in [48] under the following standing set of general assumptions:

Assumption 1.2.2 (Assumption 2.1 - [48]).

1. Y,X, ∂Y, ∂X are Banach spaces such that Y →֒ X, ∂Y →֒ ∂X.

2. A : D(A) ⊂ X → X, C : D(C) ⊂ X → X are linear opertaors.

3. L : D(A) ∩D(C) → ∂X is linear and surjective.

4. B1 : D(A) → ∂X, B2 : D(C) → ∂X are linear operators.

5. B3 : D(B3) ⊂ ∂Y → ∂X, B4 : D(B4) ⊂ ∂X → ∂X, are linear closed operators.
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Thus, in order to compare our results for (GM) with these obtained in [48] we shall

recast our problem within this more general framework. This is easily accomplished

by setting:

A = −∆, C = −kΩ∆, Lu =≡ u|Γ1
, the trace of u in Γ1

B1 = −∂n, B2 = −kΩ∂n, B3 = −kΓ∆Γ, B4 = −kΓα∆Γ

with the corresponding spaces (assuming kΓ > 0 ) :

X = L2(Ω), Y = H1
Γ0
(Ω), ∂X = L2(Γ1), ∂Y = H1(Γ1)

The basic framework presented in [48] aims at proving generation and analyticity

of C0 semigroups as being equivalent having the same properties for the blocks of

operators:



0 I

A C


 , and




0 I

B3 B4




considered on Y ×X and ∂Y × ∂X . (see Thm 3.3, 3.8, 4.5, 4.12 [48]).

Let A0 = A|ker(L), C0 = C|ker(L) and define the operators:



0 IV

A0 C0


 with domain D(A0)×D(C0) (1.2.7)




0 I∂Y

B3 B4


 with domain D(B3)× (D(B4) ∩ ∂Y ) (1.2.8)

Clearly the role of the ”coupling” operator L is critical. In fact, the results in [48]

are categorized with respect to the properties of L as
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• unbounded Y → ∂X ,

• bounded from Y → ∂X but unbounded X → ∂X .

It is this second scenario that is relevant in our situation. The corresponding results

are in section 4 [48]. However, as we shall see below, they are not applicable due

to severity of assumptions imposed either on the operators Bi, i = 1 − 4. Before

we cite and comment the results, we shall introduce more notation. Let Dλ denotes

the Dirichlet map. Also, denote by [D(A)L] the Banach space obtained by endowing

D(A) with the graph norm of the closed operator (A L)T .

Theorem A (Theorem 4.5 - Part I [48]). Assume B1 ∈ L(Y, ∂X), B2 ∈ L(X, ∂X).

Assume both DλB3 and DλB4 to have continuous extensions form ∂Y to X and from

∂X to X, respectively, for some λ ∈ σ(A0), where A0 is defined as A restricted to

the kernel of L. Then, (A,D(A)) is closable if and only if both operator matrices in

(1.2.7) and (1.2.8) are closable. In this case, the closure of (A,D(A)) generates a

C0-semigroup (resp. analytic semigroup) on if and only if the closures of both operator

matrices in (1.2.7) and (1.2.8) generate a C0-semigroup (resp. analytic semigroup)

on V ×X and ∂Y × ∂X, respectively.

To wit, part I of theorem 4.5 (theorem A assumes that B1 ∈ L(Y, ∂X), B2 ∈

L(X, ∂X). The above is never satisfied with B1 = ∂n and the choices of spaces

X, Y, ∂X . In addition, operators B3, B4 do not comply with regularity requirements

postulated in Thm 4.5-unless they are bounded. Similar conclusion applies to Part
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II of Thm 4.5 which discussed generation.

Theorem B (Part II - Theorem 4.12 [48]). Assume C0 to generate an analytic semi-

group X. Assume moreover that there exists an ǫ ∈ (0, 1) such that [D(C)L] is

continuously embedded in the complex interpolation space [D(C0), X ]ǫ. Assume that

B1 ∈ L([D(A)L], ∂X) and B2 ∈ L([D(A)L], ∂X). Then (A,D(A)) generates an ana-

lytic C0-semigroup on X if and only if both operator matrices in (1.2.7) and (1.2.8)

generate analytic semigroups on V ×X and ∂Y × ∂X, respectively.

Part II of that theorem 4.12 (theorem B) pertains to generation of analytic semi-

groups. However, here the operators B1 and B2 do not comply with regularity re-

quirements unless the Dirichlet map is sufficiently smooth-as in one dimensional case.

Indeed, we recall that (D(A)L) corresponds toH
1/2(Ω), unless the dimension of Ω = 1.

The main reason is that the treatment given in [48] treats the coupling operatorB1, B2

like a perturbation -rather than a carrier of regularity. It is this second approach that

is used in this dissertation where the matrix operators is not a perturbation of two

blocks of operator matrices but rather perturbation of a new system which is related

to Wentzell problem.
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Chapter 2

Well-Posedness

In this chapter, the aim is to establish well-posedness for the semigroup governing

the model (GM). For this purpose, we will build a suitable energy space and an

operator which is a candidate for the generator. It will then remain to demonstrate

the maximal dissipativity of this operator.

2.1 Preliminary operator definitions

Following the notation and some definitions from [57], we give the precise definitions

of the operators which will be used in the study of the system (GM).

Definition 2.1.1 (The Laplacian in Ω). Let the operator A : L2(Ω) ⊃ D(A) → L2(Ω)

be defined by:

Au = −∆u, cD(A) = {u ∈ L2(Ω), Au ∈ L2(Ω), u|Γ0
= 0, ∂nu|Γ1

= 0} (2.1.1)

Then A is self-adjoint, positive definite, and therefore the fractional powers of A are
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well-defined. In particular, we have the following caracterization:

D(A
1

2 ) = H1
Γ0
(Ω) = {z ∈ H1(Ω), z = 0 on Γ0} (2.1.2)

with ‖z‖2
D(A

1
2 )

=
∥∥∥A 1

2 z
∥∥∥
2

L2(Ω)
=
∫
Ω
|∇z|2 = ‖z‖2H1

Γ0
(Ω) , ∀z ∈ D(A

1

2 )

where the last equatility follows from Poincare’s inequality, which we recall as it will

often be used.

Proposition 2.1.2 (Poincaré’s inequality). Let Ω be a bounded domain. Then there

exists a constant C depending on the geometry, more precisely on the thickness of the

domain such that:

‖u‖W 1,p(Ω) ≤ C ‖∇u‖Lp(Ω) , ∀u ∈ W 1,p
0 (Ω)

In order to apply this inequality, note that the function u must be zero somewhere

in the domain. In our case, the boundary Γ0 with 0-Dirichlet boundary conditions

guarentees the applicability of Poincaré’s inequality.

Similar to the Laplacian in Ω, we need to define the Laplace-Beltrami operator act-

ing on the boundary Γ1. Before, we mention some useful aspects of the tangential

differential calculus from [9]. Let b(x) be the positive or negative distance to the

boundary Γ1 depending on whether the point x is outside or inside the domain Ω.

Then define the projection p(x) of a point x onto Γ1 as p(x) = x− b(x)∇b(x). Given

f ∈ H1(Γ1), we define the tangential gradient ∇Γ of the scalar function f by means

of this projection as:

∇Γf = ∇(f ◦ p)(x)|Γ1

(2.1.3)
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In a same manner we can define the tangential divergence as:

div Γ1
f = div (f ◦ p)|Γ1

(2.1.4)

and the Laplace-Beltrami of f ∈ H2(Γ1) as:

∆Γf = div Γ1
(∇Γf) = ∆(f ◦ p)|Γ1

(2.1.5)

We are now ready to define our tangential Laplace-Beltrami operator in our context:

Definition 2.1.3 (Laplace-Beltrami on the boundary). For all kΓ ≥ 0, set B :

L2(Γ1) ⊃ D(B) → L2(Γ1) to be:

Bz = −kΓ∆Γz, D(B) = {z ∈ L2(Γ1), kΓ∆z ∈ L2(Γ1)} (2.1.6)

with the associated norm (graph norm):

|u|2
D(B

1
2 )

≡ |u|2Γ1
+
∣∣∣B

1

2u
∣∣∣
2

Γ1

= |u|2Γ1
+ kΓ |∇Γu|2Γ1

The presence of the coefficient kΓ in this definition will be useful to study the differ-

ent scenarii offered by the model (GM). Indeed, this definition will allow us to treat

simultaneously cases in which there is no Laplace-Beltrami term on the boundary,

without changing any definitions. In other words, if kΓ = 0, the domain of B
1

2 is

similar to L2(Γ1) whereas if the coefficient kΓ is strictly positive the domain of B
1

2 is

similar to H1(Γ1).

We now introduce classical tools to go from the boundary (Γ1) to the interior (Ω)

and vice versa.
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Definition 2.1.4 (Neumann map). Define the map N by

z = Ng ⇔






∆z = 0 on Ω

∂nz|Γ1
= g on Γ

z|Γ0
= 0 on Γ0

(2.1.7)

Then, by elliptic theory, N is a bounded operator from L2(Γ1) to H
3

2 (Ω)).

Definition 2.1.5 (Trace map γ). Let γ : H1(Ω) → L2(Γ1) ⊂ H
1

2 (Γ1) be the restric-

tion to Γ1:

∀z ∈ H1
Γ0
(Ω), γ(z) = z|Γ1

(2.1.8)

Then, by [57, Lemma 2.0]:

N∗Az = γ(z) ∀z ∈ D(A
1

2 ) (2.1.9)

While the trace operator “requires a lost of 1/2 derivative” from the interior to the

boundary, the same concept is true when one tries to estimate a boundary term

with an interior term. As an illustration, we quote the following estimate, from [8,

Theorem 1.6.6], which will be used in chapter 5.

Proposition 2.1.6 (Trace moment inequality). Suppose that Ω has a Lipschitz bound-

ary and that p is a real number in the range 1 ≤ p ≤ ∞. Then there is a constant,

C, such that:

‖v‖Lp(Γ1)
≤ C ‖v‖1−

1

p

Lp(Ω) ‖v‖
1

p

W 1,p(Ω) , ∀v ∈ W 1,p(Ω) (2.1.10)
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In particular, ∀v ∈ H1(Ω)

|v|2Γ1
≤ C ‖v‖L2(Ω) ‖v‖H1(Ω)

≤ |∇v|2Ω
(2.1.11)

where the last inequality follows from Poincaré’s inequality (definition 2.1.2).

2.2 Definition of the generator

Let A0 be the laplacian operator with zero Dirichlet boundary conditions which is a

positive, self-adjoint operator with domain D(A0) in the Hilbert space X. It is well-

known the generator of damped wave equation with classical boundary conditions,

say Dirichlet, is of the form:

A =




0 I

−A0 −D




D(A) = D(A0)×X

(2.2.1)

where D is another positive, self-adjoint operator corresponding to the structural

dissipation of the system. Moreover, if we let the operator D be defined as a power

of the Laplacian as in [12], i.e., there exists a contant 0 < γ ≤ 1, and there are two

constants 0 < ρ1 < ρ2 <∞ such that

ρ1A
γ
0 ≤ D ≤ ρ2A

γ
0 ,

it generates an analytic C0-semigroup of contractions for γ ∈ [1
2
, 1] and only a Gevrey

C0-semigroup of contractions for γ ∈ (0, 1
2
) (see [13]). We will come back to the
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regularity question of this problem in chapter 4.

Back to the definition of our generator, it is important to note that the system (GM)

must be built from a wave operator similar to (2.2.1) both in the interior Ω and the

boundary Γ1. Therefore, it is natural to define the energy state (or state space) of

our system as follows.

Definition 2.2.1 (Energy spaces). Let U = (u, ut, u|Γ1
, u|Γ1

) = (u1, u2, u3, u4).

The associated energy space is:

H = {(u1, u2, u3, u4) ∈ D(A
1

2 )× L2(Ω)×D(B
1

2 )× L2(Γ1), u1|Γ1
= u3}

where D(A
1

2 ) = H1
Γ0
(Ω) and D(B

1

2 ) ∼





H1(Γ1) if kΓ > 0

L2(Γ1) if kΓ = 0

(2.2.2)

with associated norm:

‖u‖2H = |∇u1|2Ω + |u2|2Ω +
∣∣∣B

1

2u3

∣∣∣
2

Γ1

+ |u4|2Γ1

(2.2.3)
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Define the operator A : D(A) ⊂ H → H by:

A =




0 I 0 0

∆ DΩ 0 0

0 0 0 I

−∂n −kΩ∂n −B DΓ1




where





DΩ = kΩ∆− cΩI

DΓ1
= −αB − cΓI

(2.2.4)

where we can notice the presence on the diagonal of two wave operator blocks. This

domain of this operator is:

D(A) ={U = [u1, u2, u3, u4]
T ∈ D(A

1

2 )×D(A
1

2 )×D(B
1

2 )×D(B
1

2 ),

such that ∆(u1 + kΩu2)− cΩu2 ∈ L2(Ω),

∂n(u1 + kΩu2)− cΓu4 +B
1

2 (B
1

2u3 + αB
1

2u4) ∈ L2(Γ1),

u1|Γ1
= N∗Au1 = u3, u2|Γ1

= N∗Au2 = u4}

which is densily defined in H.

Remark 2.2.1. The following representation will be frequently used in the calcula-

tion:

−∆u = A(I −N∂n)u (2.2.5)

Remark 2.2.2. The following regularity properties of the elements in the domain
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result from the definition of D(A)

∂n(u1 + kΩu2) ∈ [D(B1/2)]∗, u1, u2 ∈ D(A) (2.2.6)

this in particular implies

∂n(u1 + kΩu2) ∈ L2(Γ1), if kΓ = 0 (2.2.7)

The above regularity resuls are stronger than classical elliptic theory which implies

∂n(u1 + kΩu2) ∈ H−1/2(Γ1) , where the latter is due to the fact that ∆(u1 + kΩu2) ∈

L2(Ω) along with u1, u2 ∈ H1(Ω). As a consequence of (2.2.6) one has well defined

duality pairing

〈∂n(u1 + kΩu2), v〉Γ1
, ∀v ∈ D(B1/2), ∀U ∈ D(A) (2.2.8)

2.3 Generation of a C0-semigroup

Within this framework, we can now state and prove our main result regarding well-

posedness:

Theorem 2.3.1. Let kΩ, cΩ, kΓ, cΓ, α be non negative. The operator A, as given in

(2.2.4), generates a C0-semigroup of contractions {eAt}t≥0 on H. In addition, if the

damping condition (1.1.14) holds, i.e. max{kΩ, kΓα} > 0, then the semigroup is

strictly contractive.

It follows that for any set of initial conditions in H, the system (GM) has a unique
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generalized solution U(.) in C([0, T ],H) satisfying:

‖U(t)‖H ≤ ‖U(0)‖H eωt (2.3.1)

Proof. In order to show the semigroup generation for the dynamics A, we wish to use

the Lumer-Phillips theorem, [44] and hence we must show the maximal dissipativity

of A.

Step 1: A is dissipative.

With the notation −∆u = A(I −N∂n)u, take U = (u1, u2, u3, u4) ∈ D(A):

< AU , U >H = (u2, u1)D(A
1
2 )
+ (u4, u3)D(B

1
2 )

− (A(I −N∂n)u1 + kΩA(I −N∂n)u2 + cΩu2, u2)Ω

recalling remark 2.2.8

− 〈∂n(u1 + kΩu2) +Bu3 + αBu4 + cΓu4, N
∗Au2〉Γ1

recalling equation 2.1.9

=
(
A

1

2u2, A
1

2u1

)
Ω
−
(
A

1

2u1 + kΩA
1

2u2, A
1

2u2

)
Ω
− cΩ |u2|2Ω

+ 〈∂n(u1 + kΩu2), u4〉Γ1
+
〈
B

1

2u4, B
1

2u3

〉

Γ1

− 〈∂n(u1 + kΩu2), u4〉Γ1
−
〈
B

1

2u3, B
1

2u4

〉

Γ1

− α
∣∣∣B

1

2u4

∣∣∣
2

Γ1

− cΓ |u4|2Γ1

= −kΩ
∣∣∣A

1

2u2

∣∣∣
2

Ω
− cΩ |u2|2Ω − α

∣∣∣B
1

2u4

∣∣∣
2

Γ1

− cΓ |u4|2Γ1

≤ 0

(2.3.2)

Therefore, A is ω-dissipative.
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Step 2: A is maximal.

It remains to show that the range condition is satisfied, i.e., if λ ∈ C, Reλ > 0 and
(
f1 f2 f3 f4

)T

∈ H is given, then the stationary equation:

(λI −A)




u1

u2

u3

u4




=




f1

f2

f3

f4




(2.3.3)

is satisfied for some

(
u1 u2 u3 u4

)T

∈ D(A).

Note that (2.3.3) becomes:






λu1 − u2 = f1

λu2 + A(I −N∂n)u1 + kΩA(I −N∂n)u2 + cΩu2 = f2

λu3 − u4 = f3

λu4 + ∂n(u1 + kΩu2) +Bu3 + αBu4 + cΓu4 = f4

(2.3.4)

In the first equation, note that f1, u1 ∈ D(A
1

2 ), so u2 ∈ D(A
1

2 ). Similarly, from the

third equation we have u4 ∈ D(B
1

2 ).

Also, from the second equation f2, u2 ∈ L2(Ω) implies A(I−N∂n)(u1+kΩu2) ∈ L2(Ω).

The fourth equation, with u4, f4 ∈ L2(Γ1) implies that ∂n(u1 + kΩu2) ∈ [D(B1/2)]′.
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The above leads to the following representation:





u2 = λu1 − f1

u4 = λu3 − f3

λ2u1 + A(I −N∂n)u1 + λkΩA(I −N∂n)u1 + λcΩu1

= f2 + λf1 + kΩA(I −N∂n)f1 + cΩf1

λ2u3 + ∂n(u1 + kΩλu1) +Bu3 + λαBu3 + λcΓu3

= f4 + λf3 + kΩ∂nf1 + αBf3 + cΓf3

(2.3.5)

To solve the stationary problem (2.3.5), we shall use a weak formulation and Lax-

Milgram theorem. Let (v1, v2, v3, v4) ∈ D(A), and for the time being we also take

F = (f1, f2, f3, f4) in D(A). Later we shall extend the argument by density to all

F ∈ H.

We consider the two last equations, multiply them by v1 and v3 respectively:





(λ2u1, v1)Ω + (A(I −N∂n)u1, v1)Ω + λkΩ (A(I −N∂n)u1, v1)Ω + λcΩ (u1, v1)Ω

= (f2 + λf1 + λkΩA(I −N∂n)f1 + λcΩf1, v1)Ω

〈λ2u3, v3〉Γ1
+ 〈∂n(u1 + kΩλu1), v3〉Γ1

+ (1 + λα) 〈Bu3, v3〉Γ1
+ cΓ 〈u3, f3〉Γ1

= 〈f4 + λf3 + kΩ∂nf1 + αBf3 + cΓf3, v3〉Γ1

(2.3.6)
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Rewriting (2.3.6) yields:





λ2 (u1, v1)Ω +
(
A

1

2u1, A
1

2 v1

)
Ω

+kΩλ
(
A

1

2u1, A
1

2v1

)

Ω
+ cΩλ (u1, v1)Ω − 〈∂n(u1 + kΩλu1), v3〉Γ1

= (f2 + λf1, v1)Ω + kΩ

(
A

1

2f1, A
1

2 v1

)

Ω
+ cΩ (f1, v1)Ω − kΩ 〈∂nf1, v3〉Γ1

(λ2 + cΓλ) 〈u3, v3〉Γ1
+ 〈∂n(u1 + kΩλu1), v3〉Γ1

+ (1 + λα)
〈
B

1

2u3, B
1

2v3

〉
Γ1

= 〈f4 + λf3, v3〉Γ1
+ kΩ 〈∂nf1, v3〉Γ1

+ α
〈
B

1

2 f3, B
1

2 v3

〉
Γ1

+ cΓ 〈f3, v3〉Γ1

(2.3.7)

Then combining these two equations and after simplification, we get:

(λ2 + cΩλ) (u1, v1)Ω + (1 + λkΩ)
(
A

1

2u1, A
1

2v1

)

Ω

+ (λ2 + cΓλ) 〈u3, v3〉Γ1
+ (1 + λα)

〈
B

1

2u3, B
1

2 v3

〉
Γ1

= (f2 + λf1 + cΩf1, v1)Ω +
(
kΩA

1

2 f1, A
1

2 v1

)
Ω

+ 〈f4 + λf3 + cΓf3, v3〉Γ1
+
〈
αB

1

2 f3, v3

〉
Γ1

(2.3.8)

This leads us to consideration of a bilinear form

a(u1, u3, v1, v3) ≡ (λ2 + cΩλ) (u1, v1)Ω + (1 + λkΩ)
(
A

1

2u1, A
1

2v1

)

Ω

+ (λ2 + cΓλ) 〈u3, v3〉Γ1
+ (1 + λα)

〈
B

1

2u3, B
1

2v3

〉
Γ1

defined for u = (u1, u3), v = (v1, v3) ∈ V

where V ≡ {(v1, v3) ∈ D(A
1

2 )×D(B
1

2 ), v3 = v1|Γ1
}.

We are solving for the variable u the variational equation:

a(u, v) = F (v), ∀v ∈ V ≡ D(A
1

2 )×D(B
1

2 )
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where F (v) be the corresponding right-hand side:

F (v) = (f2 + λf1 + cΩf1, v1)Ω + kΩ

(
A

1

2 f1, A
1

2 v1

)
Ω

+ 〈f4 + λf3 + cΓf3, v3〉Γ1
+ α

〈
B

1

2f3, B
1

2v3

〉

Γ1

with F = (f1, f2, f3, f4)
T ∈ H

We have continuity of bilinear form on V × V:

|a(u, v)| ≤ max{λ2 + cΩ|λ|, λ2 + cΓ|λ|, kΩ|λ|, α|λ|, 1} ‖u‖V ‖v‖V

|F (v)| ≤ max{|λ|, cΩ, cΓ, kΩ, α, 1} ‖F‖H ‖v‖V
(2.3.9)

The bilinear is also coercive:

Re a(u, u) = λ2 (u1, u1)Ω +
(
A

1

2u1, A
1

2u1

)
Ω
+ kΩλ

(
A

1

2u1, A
1

2u1

)
Ω
+ cΩλ (u1, u1)Ω

+ λ2 〈u3, u3〉Γ1
+
〈
B

1

2u3, B
1

2u3

〉

Γ1

+ αλ
〈
B

1

2u3, B
1

2u3

〉

Γ1

+ cΓλ 〈u3, u3〉Γ1

≥ C

[
|u1|2Ω +

∣∣∣A
1

2u1

∣∣∣
2

Ω
+ |u3|2Γ1

+
∣∣∣B

1

2u3

∣∣∣
2

Γ1

]

≥ C ‖u‖2V

(2.3.10)

Therefore a(u, v) is both bounded and coercive, so by Lax Milgram for every F ∈ H

there exists a unique solution y ∈ V. Moreover y = (y1, y3) satisfies the last two

equations in (2.3.5).

Next we reconstruct the remaining part of the vector Y . From (2.3.5)

u2 = λu1 − f1 ∈ D(A1/2), u4 = λu3 − f3 ∈ D(B1/2), ∀F ∈ H (2.3.11)

Since u3 = N∗Au1 and f3 = N∗Af1 we conclude that u4 = N∗Au2 , as required by
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the membership in the D(A). The remaining regularity requirements simply follow

from the structure of equations in (2.3.5).

In conclusion, for all F ∈ H we obtain U = (u1, u2, u3, u4) in D(A) such that

(λI −A)U = F ∈ H. Thus U is our desired solution, which completes the proof for

maximality.

As a consequence, A generates a strongly continuous semigroup of contraction {eAt}t≥0.

Note that this result on generation holds without any dissipation active.
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Chapter 3

Finite Element Methods

Before presenting more results about the semigroup {eAt}t≥0, we present the finite

element framework used to create the numerical scheme associated with our model

(GM). The aim of this chapter is:

• to construct and establish the well-posedness of the numerical scheme

• to derive error estimate between the approximate and exact solutions

3.1 Construction

To begin with, we define the geometrical domain which will be meshed thereafter.

Let Ω the domain be a rectangle with a hole inside (rectangular shape as well). Let

Γ1 be the exterior boundary on which the dynamic boundary conditions are applied

and Γ0 be the ineterior boundary on which the Dirichlet boundary conditions are

applied as described on figure 3.1 We deliberately omit to mention the dimensions of

this geometry, since we want to keep the liberty to modify them in order to possibly
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Γ0

Γ1

Ω

Figure 3.1: Domain Ω with active boundary Γ1 and 0-Dirichlet boundary Γ0

highlight phenomenon on figures. However, we assume that the lengths of the sides,

which we denote by Lx and Ly are of the same order (Lx

Ly
∼ 1). Moreover, we justify

the choice of a two-dimensions domain and of a simple shape (rectangle) by the

following reasons:

• the main goal of the dissertation is to understand the dynamics of the system

(GM), therefore, as a first study of this model, it is not necessary to have per-

turbation coming from the shape of the domain and geometric considerations.

• the computation requires the inversion of large matrices (for the spectrum), thus

complexifying the shape or having a higher-dimension domain would drastrically

increase the computation time.
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Before we move to the derivation of the finite elments method, we shall introduce

some classical notations and basic definitions, which can be found in any classical

finite element literature. We use as main reference the textbook by Thomée [56,

Chapter 1] for its accurate mathematical description and also because we will call

some of his results later.

Definition 3.1.1 (General Assumption for finite element method). With Ω a simply

connected open bounded domain in R2 or R3, let Ω be the closure of Ω. We suppose

that we are given a conforming partition Th on Ω. Each element Ωe ∈ Th is a closed

subdomain of Ω and we assume that the usual finite element requirements are satisfied,

i.e., non-overlapping and intersecting elements are disallowed. Also the union of the

elements (rectangles) determines a polygonal domain Ωh, so that it is a mesh domain

contained in but not necessarly coinciding with Ω. Finally, assume that the boundaries

∂Ωh are uniformly Lipschitz in h and with a deviation from ∂Ω bounded by Chr where

r ≥ 2 is an integer.

For our model, we choose rectangular elements, each defined by four nodes (points)

from Th. With these assumptions, it is now possible to define the space in which the

numerical approximate solutions will be sought, which depends on a small parameter

h representing the characteristic element size.

Assumption 3.1.2. Let {Sh,Ω}h be a family of finite-dimensional subspaces of H1
0 (Ωh)
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such that for small h:

min
χ∈Sh,Ω

{
‖v − χ‖L2(Ω) + h ‖(∇(v − χ))‖L2(Ω)

}
≤ Ch2 ‖v‖H2(Ω)

for v ∈ H1
0 (Ω) ∩H2(Ω), ∀χ ∈ Sh,Ω

If we denote by {Pj}Nh

j=1 the interior vertices of Th, then a typical element of Sh,Ω

is a continuous function on the closure Ω of Ω, which is uniquely determined by its

values at the points Pj and thus depends on Nh parameters. Let Φj be linear in

each element of Th taking value 1 at Pj but vanishing at the other vertices (pyramid

functions). Then {Φj}Nh

j=1 forms a basis for Sh,Ω and every χ in Sh,Ω admits a unique

representation:

χ(x, y) =

Nh∑

j=1

χjΦj(x, y), with χj = χ(Pj) (3.1.1)

A given function v on Ω vanishing on ∂Ω may now be approximated by, for instance,

its interpolant Ihv in Sh, which we define as the function in Sh,Ω which agrees with v

at the interior vertices of Th, i.e.,

Ihv(x) =

Nh∑

j=1

v(Pj)Φj(x) (3.1.2)

3.1.1 Spectral Analysis

The main aspect of this finite element model is to provide a tool displaying the eigen-

values for the model (GM). We display again for reference the system of equations
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(GM):





utt + cΩut − kΩ∆ut −∆u = 0 x ∈ Ω, t > 0

u(x, t) = 0 x ∈ Γ0, t > 0

utt + cΓut + ∂n(u+ kΩut)− kΓ∆Γ(αut + u) = 0 x ∈ Γ1, t > 0

u(0, x) = u0, ut(0, x) = u1 x ∈ Ω

(GM)

Writing the solution u(x, t) as:

u(x, t) = ueλt (3.1.3)

where λ is an eigenvalue of A, we obtain the following the characteristic equation:





λ2u+ cΩλu− kΩλ∆u−∆u = 0 on Ω

u = 0 on Γ0

λ2u+ cΓλu+ ∂n(u+ kΩλu)− kΓ∆Γ(αλu+ u) = 0 on Γ1

(3.1.4)

The reader should keep in mind that we initially define λ as the eigenvalues of the

system in order to study numerically the spectrum of A. However, once one moves to

a time dependant study of this model, the equation (3.1.3) is not relevant anymore

and the system (GM) should be transformed using a time discretization.

In order to provide the eigenvalues for this system, we need to transform the system

(3.1.4) into Nh algebraic equations, where Nh is the number of nodes of the meshed

domain. To be more precise, each algebraic equation will corresponds to (3.1.4)

at this particular node, and will be coupled with the equations of the nodes in its

neighborhood. For instance, if uej is the solution of (3.1.4) at the node j, then the jth
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algebraic equation will have variables uej and all the uei ’s surrounding uej . Rewriting

the Nh algebraic equations in a matrix form:

F (λ)




ue1

ue2

...

ueNh




= 0 (3.1.5)

the values of λ for which F (λ) is non-invertible will be the desired eigenvalues. The

process of transforming (3.1.4) into (3.1.5) is called the spatial discretization.

3.1.2 Spatial discretization

Firstly, we mesh our domain Ω into equally-sized rectangles defined by 2 nodes per

rectangle’s side. Then, we multiply the first equation of (3.1.4) with a weight function

vΩ ∈ Sh,Ω which is assumed to be differentiable once with respect to x and y and then

integrate over the element domain Ωe to obtain a weak formulation:

(λ2 + cΩλ) (u, vΩ)L2(Ωe)
+ (1 + kΩλ) (∇u,∇vΩ)L2(Ωe)

− (1 + kΩλ) (∂nu, vΩ)L2(∂Ωe)
= 0

(3.1.6)

In order to interpret boundary term, it is necessary to extend the definition of Sh,Ω to

finite-dimensional subspaces of H1
Γ0,h

(Ωh) and H
1(Γ1,h). Indeed, ∂Ωh is the union of

Γ0,h and Γ1,h where the elements of Sh,Ω vanish on Γ0 and we define a family {Sh,Γ1
}h

of finite-dimensional subspaces of H1(Γ1,h) such that:

Sh = {χ = (χ1, χ2), χ1 ∈ Sh,Ω, χ2 ∈ Sh,Γ1
, χ1|Γ1

= χ2} (3.1.7)
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and extend assumption 3.1.2 to:

Assumption 3.1.3.

min
χ∈Sh

{
‖v − χ‖L2(Ω)×L2(Γ1)

+ h ‖(∇(v − χ))‖L2(Ω)×L2(Γ1)

}
≤ Ch2 ‖v‖H2(Ω)×H2(Γ1)

for v ∈ [H1
0 (Ω)×H1(Γ1)] ∩ [H2(Ω)×H2(Γ1], ∀χ ∈ Sh,Ω

Keeping the vertices {Pj}Nh

j=1 and the conforming partition Th previously defined with

Sh,Ω, a typical element of Sh,Γ1
is uniquely determined by its values at the points

Pj ∈ Th ∩ Γ1,h. We form a basis for Sh,Γ1
with {ΦΓ1

j }Nh

j=1 defined by the following:

• continuous function on Γ1

• linear in each element of Th ∩ Γ1,h

• equal to 1 at Pj in Th ∩ Γ1,h

• equal to 0 at the other vertices

• identically equal to 0 for all (x, y) ∈ Ω− Γ1

A typical element Γ1,e of Th∩Γ1 is a side of the rectangle-element whose nodes belong

to Th. Then every χΓ1(x, y) ∈ Sh,Γ1
admits a unique representation:

χΓ1(x, y) =

Nh∑

j=1

χΓ1

j ΦΓ1

j (x, y), with χΓ1

j = χΓ1(Pj) (3.1.8)

We now multiply the third equation of (3.1.4) by a weight function v|Γ1
∈ Sh,Γ1

and

then integrate over the element domain Γ1,e:

(λ2 + λcΓ)
(
u, v|Γ1

)
L2(Γ1,e)

+ kΓ(1 + αλ)
(
∇Γu,∇Γv|Γ1

)
L2(Γ1,e)

= −(1 + kΩλ)
(
∂nu, v|Γ1

)
L2(Γ1,e)

(3.1.9)
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Figure 3.2: Typical rectangular element of size a × b and corresponding Lagrange

interpolation functions ({Φe
k}4k=1) in local coordinate system

Choosing v|Ω = v|Γ1
on Γ1, the couple (v|Ω, v|Γ1

) becomes an element of Sh defined

(3.1.7) and we obtain the following general weak formulation, combining (3.1.6) and

(3.1.9):

(λ2 + cΩλ) (u, v)L2(Ωe)
+ (1 + kΩλ) (∇u,∇v)L2(Ωe)

+GΓ1
= 0

where GΓ1
=





(λ2 + λcΓ) (u, v)L2(Γ1,e)
+ kΓ(1 + αλ) (∇Γu,∇Γv)L2(Γ1,e)

if ∃ Γ1,j ∈ (Th ∩ Γ1) such that Ωe ∩ Γ1,j 6= ∅

0 otherwise

(3.1.10)

From now, without loss of generality, we suppose that Ωe intersects the boundary

Γ1, i.e. GΓ1
6= 0 and u is approximated by the following expressions over a typical

elements Ωe:

u(x, y) ≈ ueh(x, y) =

Nh∑

j=1

(Φj(x, y) + ΦΓ1

j (x, y))uej (3.1.11)

where the coefficients {uej}Nh

j=1 are the Nh unknowns. It is a common procedure to

choose the {Φj} to be the linear Lagrange interpolation functions in dimension 2. We

recall that Φj takes value 1 at the point Pj is zero at the other vertices. See figure

3.2.

After substituing the finite element approximation for (u|Ω, u|Γ1
) in (3.1.11) into

the weak form (3.1.10), we obtain the following equation which must hold for every
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Φe
1(ζ, η) = (1− ζ

a
)(1− η

b
)

Φe
2(ζ, η) =

ζ
a
(1− η

b
)

Φe
3(ζ, η) = (1− ζ

a
)η
b

Φe
4(ζ, η) =

ζ
a
η
b

admissible choice of weight function (v|Ω, v|Γ1
) ∈ Sh:

0 =

∫

Ωe

(λ2 + cΩλ)Φi

Nh∑

j=1

Φj(x, y)u
e
j + (1 + kΩλ)∇Φi

Nh∑

j=1

∇Φj(x, y)u
e
jdxdy

+

∫

Γ1,e

(λ2 + λcΓ)Φ
Γ1

i

Nh∑

j=1

ΦΓ1

j (x, y)uej + kΓ(1 + αλ)∇ΓΦ
Γ1

i

Nh∑

j=1

∇ΓΦ
Γ1

j (x, y)uejds

(3.1.12)

For each choice of (v|Ω, v|Γ1
), we obtain an algebaic relation among the (uΩ,1, ..., uΩ,Nh

).

We label the algebraic equation resulting from substitution of Φi (resp. ΦΓ1

i ) for vΩ

(resp. vΓ1
) as the ith algebraic equation, for i = 1, ..., Nh. Thus, the ith algebraic

equation is:

0 =

Nh∑

j=1

uej




∫
Ωe
(λ2 + cΩλ)ΦjΦi + (1 + kΩλ)∇Φj∇Φidxdy

+
∫
Γ1,e

(λ2 + λcΓ)Φ
Γ1

j ΦΓ1

i + kΓ(1 + αλ)∇ΓΦ
Γ1

j ∇ΓΦ
Γ1

i ds


 (3.1.13)

Considering the Nh equations for the Nh unknowns, we obtain the following matrix
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system.

0 =
[
(λ2 + cΩλ)M + (1 + kΩλ)K + (λ2 + λcΓ)G

M + kΓ(1 + αλ)GK
]




ue1

ue2

...

ueNh




(3.1.14)

where, for i, j = 1, 2, ..., Nh, the entries for each matrix are given by:

Kij =
∫
Ωe

ΦjΦi dxdy Mij =
∫
Ωe

∇Φj∇Φi dxdy

GM
ij =

∫
Γe
ΦΓ1

i ΦΓ1

j ds GK
ij =

∫
Γe
∇ΓΦ

Γ1

i ∇ΓΦ
Γ1

j ds

(3.1.15)

If an interior element (rectangular shape) is of dimensions a × b then the element

stiffness and mass matrices for the interior domain are given by:

Me =
ab

36




4 2 1 2

2 4 2 1

1 2 4 2

2 1 2 4




Ke =
1

6ab




2(a2 + b2) a2 − 2b2 −(a2 + b2) b2 − 2a2

a2 − 2b2 2(a2 + b2) b2 − 2a2 −(a2 + b2)

−(a2 + b2) b2 − 2a2 2(a2 + b2) a2 − 2b2

b2 − 2a2 −(a2 + b2) a2 − 2b2 2(a2 + b2)




For the boundary matrices, recall that the elements are one dimension and correspond

to one side of the rectangle element. Thus, let l be the length of this side, i.e., l = a
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or l = b, then the boundary element mass and stiffness matrices are given by:

GM
e =

l

6




2 1 0 0

1 2 0 0

0 0 0 0

0 0 0 0




GK
e =

1

l




1 −1 0 0

−1 1 0 0

0 0 0 0

0 0 0 0




Remark 3.1.1. We note that one can derive a similar finite element model with

elements having a larger number of nodes, resulting in higher degree polynomials for

the basis functions of Sh. We will see in the section dealing with the error estimate

how such a change would affect the accuracy of the approximation.

The equation (3.1.14) allows to determine approximate eigenvalues. Indeed, they

correspond to the values of λ such that the determinant of F (λ) is zero:

F (λ) =
[
(λ2 + cΩλ)M + (1 + kΩλ)K + (λ2 + λcΓ)G

M + kΓ(1 + αλ)GK
]

(3.1.16)

3.2 Error Estimates for (VM) and (VM) models

3.2.1 Preliminaries

In this section, we shall investigate the error estimate for the finite element model

developed above. The results of this section are presented in the theorems 3.2.9

and 3.2.10 for the frictional (FM) and viscoelastic (VM) models respectively. The

main interest is to determine its order of convergence, i.e., the finite element error
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‖u− uh‖ in some norm ‖.‖ bounded by O(hγ), where uh is the approximate solution,

u the exact solution, and the characteristic size element h is defined as the maximal

length of the sides of the partition Th. The error estimates derived in the following

paragraphs tells us how fast the error decreases as we decrease the mesh size. We

will see very quickly that the power γ is actually the degree of the polynomials from

the finite-dimensional space Sh, therefore, we will derive the error estimates in the

general context of polynomials of degree r, which lead to a little modification of

the numerical sheme. Instead of considering 4 nodes-rectangle elements, we would

define the rectangles elements with r + 1 nodes per side. The resulting Lagrange

interpolation polynomials would be of degree r and form a basis for the space Sh now

consisting of:

• 2-dimensional polynomials of degree at most r in Ω, vanishing at Γ0

• 1-dimensional polynomials of degree at most r in Γ1.

instead of linear functions. The procedure to determine error estimates is well-known

in the literature and consists in introducing a projection of the real solution onto the

finite dimensional subspace Sh, and then evaluate the error:

• between the exact solution and the projection

• between the approximate solution and the projection

A recurring theorem used in this section is Grownall’s lemma, which we recall for

future references:
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Lemma 3.2.1 (Gronwall). Assume:

• u(t) ≥ 0

• u(s) continuous on [a, b]

• v(t) ≤ c+
∫ b

a
v(s)u(s)ds on [a, b]

Then

v(t) ≤ c exp

[∫ t

a

u(s)ds

]
(3.2.1)

3.2.2 Definitions and Notations

As we have modified the definition of Sh, we must also extend assumption (3.1.3) to

Ls-theory:

Assumption 3.2.2.

min
χ∈Sh

{
‖v − χ‖L2(Ω)×L2(Γ1)

+ h ‖(∇(v − χ))‖L2(Ω)×L2(Γ1)

}
≤ Chs ‖v‖Hs(Ω)×Hs(Γ1)

for v ∈ [H1
0 (Ω)×H1(Γ1)] ∩ [Hs(Ω)×Hs(Γ1)], 1 ≤ s ≤ r, ∀χ ∈ Sh,Ω

Definition 3.2.3 (Operator A and B). First recall the Laplace operator A, the Neu-

mann map N and the Laplace-Beltrami operator defined respectively in (2.1.1), (2.1.7)

and (2.1.6). Then, we can define the operator A : L2(Ω) × L2(Γ1) ⊃ D(A) →

L2(Ω)× L2(Γ1) by:

A =



A(I −N∂n) 0

∂n B


 (3.2.2)
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D(A) = {[u1, u2]T ∈ D(A
1

2 )×D(B
1

2 ),

such that A(I −N∂n)u1 ∈ L2(Ω), u1|Γ1
= N∗Au1 = u2

∂nu1 +Bu2 ∈ L2(Γ1)}

In a similar way, we define the operator B : L2(Ω)×L2(Γ1) ⊃ D(A) → L2(Ω)×L2(Γ1)

by:

B =



kΩA(I −N∂n) 0

kΩ∂n αB


 (3.2.3)

D(B) = {[u1, u2]T ∈ D(A
1

2 )×D(B
1

2 ),

such that kΩA(I −N∂n)u1 ∈ L2(Ω), u1|Γ1
= N∗Au1 = u2

∂nu1 + αBu2 ∈ L2(Γ1)}

Lemma 3.2.4. B, given in (3.2.3) is self-adjoint.

Proof. Let u = (u1, u2) be in D(B) and y = (y1, y2) be in D(B∗), then taking the

inner product:

(Bu, y)L2(Ω)×L2(Γ1)

= (kΩAu1, y1)Ω − (kΩAN∂nu1, y1)Ω + 〈kΩ∂nu1, y1〉Γ1
+ 〈αBu1, y1〉Γ1

=
(
kΩA

1

2u1, A
1

2y1

)
Ω
+ 〈u1, αBy1〉Γ1

since (AN∂nu1, y1)Ω = 〈∂nu1, N∗Ay1〉Γ1
= 〈∂nu1, y2〉Γ1

= (u1, kΩAy1)Ω − (u1, kΩAN∂ny1)Ω + 〈u1, kΩ∂ny1〉Γ1
+ 〈u1, αBy1〉Γ1

= (u,By)L2(Ω)×L2(Γ1)

(3.2.4)

Therefore B is self-adjoint.
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We would like to add another convenient notation for this section. With r ≥ 1 an

integer corresponding to the maximal degree of the polynomial in Sh, define the spaces

Y s by:

Y 0 = L2(Ω)× L2(Γ1)

Y s = [D(A
1

2 ) ∩Hs
Γ0
(Ω)]× [D(B

1

2 ) ∩Hs(Γ1)], for all 1 ≤ s ≤ r

with associated norms:

‖U‖2Y 0 =
∥∥u|Ω

∥∥2
L2(Ω)

+
∥∥u|Γ1

∥∥2
L2(Γ1)

‖U‖2Y s =
∥∥u|Ω

∥∥2
Hs

Γ0
(Ω)

+ kΓ
∥∥u|Γ1

∥∥2
Hs(Γ1)

, for all 1 ≤ s ≤ r

This implies:

‖U‖2Y 1 =
∥∥u|Ω

∥∥2
H1

Γ0
(Ω)

+ kΓ
∥∥u|Γ1

∥∥2
Hr(Γ1)

=
∥∥∇u|Ω

∥∥2
L2(Ω)

+ kΓ
∥∥∇Γu|Γ1

∥∥2
L2(Γ1)

=
∥∥∥A

1

2U
∥∥∥
2

Y 0

(3.2.5)

For k ≥ 0, s ≥ 0, we introduce the special convenient notation:

‖U‖Y s,k =
k∑

j=1

[∥∥Dj
tU(t)

∥∥
Y s +

∫ t

0

∥∥Dj
tU(s)

∥∥
Y s ds

]

where Dt =
d
dt
.

3.2.3 Wave equation with Frictional damping (FM)

We first recall the definition of the Ritz projection, also called elliptic projection.
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Definition 3.2.5 (Ritz Projection). Let A = ∆, the Ritz projection is defined as the

orthogonal projection with respect to the inner product (∇v,∇w)Ω, so that

(∇Rhv,∇χ) = (∇v,∇χ) for v ∈ H1
0 , ∀χ ∈ Sh

(3.2.6)

Remark 3.2.1. The Ritz projection commutes with differentiation with respect to a

parameter (in our case, time).

In our case, we would like to generalize this operator to the interior and the active

boundary Γ1. Let U = (u|Ω, u|Γ1
) ∈ Y 1 = H1

Γ0
(Ω)× [D(B

1

2 ) ∩H1(Γ1)].

Similary to the Ritz or elliptic projection, we define the projection Rh onto Sh as the

orthogonal projection with respect to the inner product (U, χ)Y 1 =
(
A

1

2U,A
1

2χ
)
Y 0

,

so that

(RhU, χ)Y 1 = (U, χ)Y 1 , for all χ ∈ Sh
(3.2.7)

To begin with, we estimate the difference between the solution and its projection on

Sh and obtain a first approximation property:

Lemma 3.2.6. Assume that (3.2.2) holds. Then, with Rh defined by (3.2.7) we

have:

‖RhU − U‖Y 0 + h
∥∥∥A

1

2 (RhU − U)
∥∥∥
Y 0

≤ Chs ‖U‖Y s , for 1 ≤ s ≤ r (3.2.8)

Proof. Let 1 ≤ s ≤ r, we will proceed in 3 steps:

Step 1: Show that ‖RhU − U‖Y 1 ≤ Chs−1 ‖U‖Y s, for 1 ≤ s ≤ r
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Since by (3.2.7), RhU is the orthogonal projection of U onto Sh with respect to the

Y 1 inner product, we have by (3.2.2):

‖RhU − U‖Y 1 ≤ inf
χ∈Sh

{‖U − χ‖Y 1}

≤ Chs−1 ‖U‖Y s

(3.2.9)

Step 2: Show that ‖RhU − U‖Y 0 ≤ Chs ‖U‖Y s, for 1 ≤ s ≤ r

Using a duality argument, ∀φ ∈ Y 0, let ψ ∈
[
H2(Ω) ∩H1

Γ0
(Ω)
]
× [H2(Γ1) ∩H1(Γ1)]

be a solution of 



∆ψ = φ|Ω, in Ω

−∂nψ +∆Γψ = φ|Γ1
, in Γ1

ψ = 0, on Γ0

(3.2.10)

Then, by elliptic regularity,

‖ψ‖Y 2 ≤ C ‖φ‖Y 0
(3.2.11)
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For all ψh ∈ Sh, we have

(RhU − U, φ)Y 0 =
(
(RhU − U)|Ω,∆ψ

)
L2(Ω)

+
(
(RhU − U)|Γ1

,∆Γψ
)
L2(Γ1)

= (RhU − U, ψ)Y 1

= (RhU − U, ψ − ψh)Y 1

since ψh ∈ Sh, (3.2.8) holds and (RhU − U, ψh)Y 1 = 0

≤ ‖RhU − U‖Y 1 ‖ψ − ψh‖Y 1

≤ Chs−1 ‖U‖Y s ‖ψ − ψh‖Y 1 by (3.2.9)

≤ Chs ‖U‖Y s ‖φ‖Y 0 by (3.2.2) with s = 2

(3.2.12)

The desired result is obtained by choosing φ = RhU − U .

Step 3: Conclusion

By the definition of Rh, and the combination the results obtained in the two previous

steps, we get (3.2.8).

Lemma 3.2.7. Under the assumption of lemma 3.2.6, and with k any positive integer,

we have

∥∥Dk
t (RhU − U)

∥∥
Y 0

+ h
∥∥∥Dk

tA
1

2 (RhU − U)
∥∥∥
Y 0

≤ Chs ‖U‖Y s,k , for 1 ≤ s ≤ r

where ‖U‖Y s,k =
k∑

j=1

[∥∥Dj
tU(t)

∥∥
Y s +

∫ t

0

∥∥Dj
tU(s)

∥∥
Y s ds

]

(3.2.13)

Proof. Recall that Rh is an elliptic projection and thus commutes with differentiation

with respect to time (see remark 3.2.1). Repeating the proof of lemma 3.2.6, we obtain
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the desired result for any positive integer k.

Theorem 3.2.8. Consider the initial boundary value problem:






Ut − AU = 0 in Ω× Γ1

U = 0 on Γ0

U(., 0) = Uo on Ω× Γ1

(3.2.14)

and the associated semidiscrete problem





(Uh,t, χ)Y 0 +
(
A

1

2Uh,A
1

2χ
)
Y 0

= 0, ∀χ ∈ Sh, t > 0,

Uh(0) = Uh,0

(3.2.15)

with Uh(t) ∈ Sh. Then, for t ≥ 0

∥∥Dk
t (Uh(t)− U(t))

∥∥
Y 0

≤ ‖Uh,0 − U0‖Y 0,k + Chr(‖U‖Y r ,k +

∫ T

0

‖Ut‖Y r,k dt) (3.2.16)

Proof. We start with the case k = 0.

A classical strategy throughout the error analysis is to write the error as a sum of

two terms:

Uh(t)− U(t) = θ(t) + ρ(t) where θ = Uh −RhU, ρ = RhU − U (3.2.17)

By lemma 3.2.6,

‖ρ(t)‖Y 0 ≤ Chr ‖U(t)‖Y r ≤ Chr
(
‖U0‖Y r +

∫ t

0

‖Ut‖Y r ds

)
(3.2.18)
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We are left with the θ-bound, observe that:

(θt, χ)Y 0 + (θ, χ)Y 1 = (Uh,t, χ)Y 0 + (Uh, χ)Y 1 − (RhUt, χ)Y 0 − (RhU, χ)Y 1

= − (RhUt, χ)Y 0 − (RhU, χ)Y 1

= − (RhUt, χ)Y 0 + (Ut, χ)Y 0 , by (3.2.15)

= − (ρt, χ)Y 0

(3.2.19)

where the last step was obtained since the operator Rh commutes with time differ-

entiation.

But θ ∈ Sh, so by letting χ = θ we obtain:

(θt, θ)Y 0 + ‖θ‖2Y 1 = − (ρt, θ)Y 0
(3.2.20)

It follows that:

1

2

d

dt
‖θ‖2Y 0 ≤ ‖ρt‖Y 0 ‖θ‖Y 0

≤ ‖ρt‖2Y 0 + ‖θ‖2Y 0

(3.2.21)

Integrate in time and apply Gronwall’s (lemma 3.2.1):

‖θ(t)‖2Y 0 ≤
∫ t

0

‖ρt‖2Y 0 + ‖θ‖2Y 0 ds+ ‖θ(0)‖2Y 0

≤
∫ t

0

‖ρt‖2Y 0 ds+ ‖θ(0)‖2Y 0

(3.2.22)

By lemma 3.2.6, we have the two following inequalities




‖ρt‖2Y 0 ≤ ‖RhUt − Ut‖2Y 0 ≤ Ch2r ‖Ut‖2Y r

‖θ(0)‖2Y 0 = ‖Uh,0 −RhU0‖2Y 0

≤ ‖Uh,0 − U0‖2Y 0 + ‖U0 −RhU0‖2Y 0

≤ ‖Uh,0 − U0‖2Y 0 + Ch2r ‖U0‖2Y r

(3.2.23)



67

Using these inequalities in (3.2.21), we get:

‖θ(t)‖Y 0 ≤ ‖Uh,0 − U0‖Y 0 + Ch2r(

∫ t

0

‖Ut‖Y r ds+ ‖U0‖Y r) (3.2.24)

Combine (3.2.18) and (3.2.24) to get the desired result. The proof for positive k

follows from the same process and the result from lemma 3.2.7

We can now turn to our main result for error estimate of the friction model:

Theorem 3.2.9. With U = (uΩ, uΓ1
), let U be the solution of (FM) and Uh be the

solution of:




(uh,tt, χΩ)Ω + (uh,t, χΩ)Ω + (∇uh,∇χΩ)Ω

〈uh,tt, χΓ1
〉Γ1

+ 〈uh,t, χΓ1
〉Γ1

+ 〈∇Γuh,∇ΓχΓ1
〉Γ1

= 0

Uh(0) = Uh,0(0), Uh,t = Uh,1(0)

(3.2.25)

Assume:

‖Uh,0 − U0‖Y 0 + h ‖Uh,0 − U0‖Y 1 ≤ Chr (3.2.26)

‖Uh,1 − U1‖Y 0 ≤ Chr (3.2.27)

Then for any non-negative integer k we have:

‖(Uh − U)(t)‖Y 0 ≤ C(u)hr (3.2.28)

Proof. First observe that:





Utt + CUt + AU = 0, in Ω× Γ1, for t ∈ J = [0, t)

U = 0, on Γ0, for t ∈ J

U(0) = U0, , Ut(0) = U1, in Ω× Γ1

(3.2.29)
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is equivalent to (FM), with C =



cΩ 0

0 cΓ


.

Also the semidiscrete analogue formulation to (3.2.29) is:





(Uh,tt, χ)Y 0 + (Uh,t, χ)Y 0 + (Uh, χ)Y 1 = 0, for χ ∈ Sh, t ∈ J

Uh(0) = Uh,0(0), Uh,t = Uh,1(0)

(3.2.30)

and is equivalent to (3.2.25). Therefore, it is enough to study the error between U and

Uh in the context of (3.2.29) and (3.2.30). For the sake of convenience to the reader,

and without loss of generality, assume that the damping matrix C is the identity

matrix, i.e., cΩ = cΓ = 1.

First, we define the operator W : J̄ → Sh by:






(Wt − Ut, χ)Y 0 + (W − U, χ)Y 1 = 0

W (0) = Uh,0

(3.2.31)

We use the common procedure to split the error Uh − U into ρ = W − U and

θ = Uh −W .

By theorem 3.2.8, we have the ρ-bound:

∥∥Dk
t ρ
∥∥
Y 0

≤ Chr (3.2.32)

where Dk
t denotes the kth-time derivative.

To get the θ-bound, observe that:

(θtt, χ)Y 0 + (θt, χ)Y 0 + (θ, χ)Y 1 = − (ρtt, χ)Y 0
(3.2.33)
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Since θt ∈ Sh, we can choose χ = θ:

1

2

d

dt

(
‖θt‖2Y 0 + ‖θ‖2Y 1

)
+ ‖θt‖2Y 0 = − (ρtt, θt)Y 0

(3.2.34)

After eliminating the non-negative term ‖θt‖2Y 0 , integrate in time and apply Gron-

wall’s (lemma 3.2.1):

‖θt(t)‖2Y 0 + ‖θ(t)‖2Y 1 ≤
∫ T

0

‖ρtt‖2Y 0 + ‖θt‖2Y 0 ds+ ‖θt(0)‖2Y 0 + ‖θ(0)‖Y 1

≤ Ch2r + ‖θt(0)‖2Y 0 + ‖θ(0)‖Y 1

(3.2.35)

It remains to estimate ‖θt(0)‖2Y 0 and ‖θ(0)‖Y 1 , by (3.2.32) and (3.2.26):

‖θ(0)‖Y 1 ≤ ‖W (0)− U0‖2Y 1 + ‖U0 − Uh,0‖2Y 1 ≤ Ch2r

‖θt(0)‖Y 0 ≤ ‖Wt(0)− U1‖2Y 0 + ‖U1 − Uh,1‖2Y 0 ≤ Ch2r
(3.2.36)

3.2.4 Wave equation with viscoelastic damping (VM)

The error estimate for our viscoelastic model (VM) could be obtained using the

results by Thomée et al. in [35]. This paper presents intrinsically interesting error

estimate, the authors studied the numerical solution of parabolic integrodifferential

equations of the form:

ut + Pu+

∫ t

0

Qu(s)ds = f(t), in Ω̃, t ∈ J = (0, T ], (3.2.37)

together with homogeneous Dirichlet boundary conditions and given initial values.

In their set-up, Ω̃ is a bounded domain in Rd, d ≥ 1, with smooth boundary, P (t)
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is a self-adjoint positive-definite linear elliptic partial differential operator of second

order, and Q(t, s) is an arbitrary second order linear partial differential operator.

Acting upon the error estimate of (3.2.37), they are able to treat not only hyperbolic

integrodifferential equations, but also Sobolev and viscoelasticity type equations. In

particular, theorem 2.1, lemma 2.1 and theorem 5.1 from [35] lead to the error estimate

for viscoelasticity type equations which we state for a general domain Ω̃:

Theorem C (Theorem 5.2 [35] - Generalized damped equation). Define the following

equation with the initial boundary value problem:




ũtt + P ũt +Qũ = f in Ω̃, for t ∈ J

ũ = 0 on δΩ̃, for t ∈ J

ũ(0) = ũ0, ũt(0) = ũ1 in Ω̃

(3.2.38)

and its semidiscrete analogue:

(ũh,tt, χ) + P (ũh,t, χ) +Q(ũh, χ) = (f(t), χ) for χ ∈ Sh, t ∈ J

ũh(0) = ũh,0, ũh,t(0) = uh,1

(3.2.39)

P is a second order self adjoint positive definite elliptic operator.

Q is a general second order differential operator.

P (., .) and Q(., .) are the associated bilinear forms.

Let ũ and ũh be the solutions of (3.2.38) and (3.2.39), with u smooth enough.

Assume that:

‖ũh,0 − ũ0‖L2(Ω̃) + ‖ũh,0 − ũ0‖H1(Ω̃) ≤ Chr (3.2.40)
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‖ũh,1 − ũ1‖L2(Ω̃) ≤ Chr (3.2.41)

Then for any non-negative integer k we have:

‖(ũh − ũ)(t)‖L2(Ω̃) ≤ C(ũ)hr (3.2.42)

The procedure to prove this theorem is very classical and follow the same process

we used in the previous section to demonstrate the error estimate for the model with

frictional damping (FM). Indeed, theorem 2.1 and lemma 2.1 from [35] allow to

obtain error estimate between the exact solution and its projection onto Sh for the

equation (3.2.37). Then, theorem 5.1 (in [35]) provides the error estimate for the

so-called Sobolev type equations:





Put +Qu = f, in Ω, for t ∈ J

u = 0, on δΩ, for t ∈ J

u(0) = u0, in Ω

The equation is used to define the projection of u onto Sh in the proof of the error

estimate for the viscoelastic type equations (3.2.38) in theorem C (theorem 5.2 from

[35]). Given these results, it is now possible to derive the error estimate associated

with our viscoelastic model (VM):

Theorem 3.2.10 (Error estimates for the viscoelastic model). Suppose that U =

(u|Ω, u|Γ1
) is the solution of the viscoelastic model (VM) Uh is the solution of the
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semidiscrete problem:






(uh,tt, χ)Ω + kΩ (∇uh,t,∇χ)Ω + (∇uh,∇χ)Ω

〈uh,tt, χ〉Γ1
+ kΓ 〈∇Γuh,t,∇Γχ〉Γ1

+ 〈∇Γuh,∇Γχ〉Γ1
= 0

(3.2.43)

Assume:

‖Uh,0 − U0‖Y 0 + h ‖Uh,0 − U0‖Y 1 ≤ Chr (3.2.44)

‖Uh,1 − U1‖Y 0 ≤ Chr (3.2.45)

Then for any non-negative integer k we have:

‖(Uh − U)(t)‖Y 0 ≤ C(u)hr (3.2.46)

Proof. We first establish the equivalence between the viscoelastic model (VM) and

viscoelasticity type equation (3.2.38) provided:

• Ω̃ = Ω× Γ1

• define P = B =



kΩA(I −N∂n) 0

kΩ∂n αB


 and Q = A =



A(I −N∂n) 0

∂n B




(definition 3.2.3)

• B is self-adjoint (see lemma 3.2.4)

It follows that the semidriscrete analogues are also equivalent ((3.2.43) and (3.2.39)).

Therefore, we can apply Thomèe’s theorem C to obtain the desired estimate.
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Chapter 4

Spectral Properties and Regularity

of the Semigroup

It is well known that solutions to parabolic systems experience gains in regularity,

for t ≥ 0. Actually, under sufficiently strong damping, the dynamics of the original

model (GM) are parabolic rather than hyperbolic. In this chapter, our aim is to

classify the semigroups associated with (GM) by their smoothing properties from the

“best” scenario: analytic regularity to the “worse” scenario: absence of regularity:

hyperbolic cases, but also taking account of intermediate stage such as the Gevrey’s

class.

The separation of the general model (GM) into two submodels suddenly springs into

focus in the context of regularity properties of the semigroup {eAt}t≥0. We note

that the frictional model (FM) is hyperbolic while the viscoelastic model (VM) is

parabolic (provided the presence of damping). Therefore, this chapter will concentrate

on the parabolic cases of (GM), thus, we start with the viscoelastic model (VM)
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which we display again for reference:





utt − kΩ∆ut −∆u = 0 x ∈ Ω, t > 0

u(x, t) = 0 x ∈ Γ0, t > 0

utt + ∂n(u+ kΩut)− kΓ∆Γ(αut + u) = 0 x ∈ Γ1, t > 0

u(0, x) = u0, ut(0, x) = u1 x ∈ Ω

(VM)

This model is highly interesting in the investigation of solution’s regularity as it

offers different “levels” of smootheness which can be identified and characterized by

the bound on ‖R(iβ,A)‖L(H) as follows:

‖R(iβ,A)‖L(H) ≤
C

f(β)

where f(β) ∼





|β| if A generates an analytic semigroup

|β|γ, for 0 < γ ≤ 1 if A generates a semigroup with

intermediate reguliraty (Gevrey)

log(|β|) if A generates a differentiable semigroup

Furthermore, the function f(β) encloses the region containing the spectrum of the

generator. For instance, it is well known that analytic semigroup can be enclosed in

a triangular sector (see figure 1.3 [p. 19]), i.e. by functions of the form f(β) = aβ+ b.

We recall that this figure corresponds to the eigenvalues of a wave equation with

viscoelastic damping and 0-Dirichlet boundary conditions (model (VM) with Γ1 = ∅)

and is governed by an analytic semigroup. It is one of the goal of this chapter to

determine how the dynamic boundary conditions (Γ1 6= ∅) affect this result. Similarly,
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intermediate regularity semigroup’s spectrum can be enclosed with functions of the

form f(β) = βγ + C and differentiable semigroup’s spectrum with functions of the

form f(β) = log(β) + C. However, in the case of hyperbolic equations, the spectrum

is not enclosable anymore and presents asymptotics components in its spectrum.

Therefore the numerical spectrum provides a good illustration of regularity results,

but they can also suggest that a better regularity can reached or not. In particular,

the absence of viscoelastic damping on the boundary (α = 0) gives raise to this

intermediate regularity called Gevrey regularity as we will see in the second part of

this chapter.

4.1 Analytic Semigroup

We first determine under which conditions the operator A, defined in (2.2.4), offers

a maximum regularity, i.e., when does A generate an analytic semigroup. We omit

to mention the energy space for the moment since the analyticity can be achieved in

many spaces, including H, of course. The conditions for analyticity are related to

the amount of strong damping present in the system. As we will see, the frictional

dampings are transparent in the seek of analyticity, therefore one could ignore them

and work only with the model (VM). We can now state and proof our two main

theorems in this chapter. The first theorem uses a resolvent approach allowing an im-

mediate link with the observation of the spectrum. However, it relies on the following

assumption:
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Assumption 4.1.1. With kΩ > 0 A is exponentially stable

Remark 4.1.1. In chapter 5 (theorem 5.1.1), we will be able to prove the exponential

stability for model (GM) with kΩ > 0 and thus one could eliminate this assumption .

4.1.1 Resolvent approach

Theorem 4.1.2. Suppose that assumption holds 4.1.1. Let kΩ, kΓ, α > 0. Suppose

|β| ≥ 1 so that (iβ −A)−1 ∈ L(H), then with F = (f1, f2, f3, f4)
T ∈ H

‖R(iβ;A)‖L(H) ≤
C

|β|

It follows that {eAt}t≥0 is an analytic semigroup on H.

Proof. We recall the definition of A : D(A) ⊂ H → H in (2.2.4):

A =




0 I 0 0

∆ DΩ 0 0

0 0 0 I

−∂n −kΩ∂n −B DΓ1




where






DΩ = kΩ∆− cΩI

DΓ1
= −αB − cΓI

Assume that kΩ, kΓ, α > 0. Let β ∈ R so that (iβ − A)−1 ∈ L(H), then with

F = (f1, f2, f3, f4)
T ∈ H and pre-image U = (u1, u2, u3, u4)

T ∈ D(A) we consider the
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resolvent equation (iβ −A)U = F :

(iβ −A)




u1

u2

u3

u4




=




f1

f2

f3

f4




(4.1.1)

Expanding (4.1.1), we get:

U =




u1

u2

u3

u4




= (iβ −A)−1




f1

f2

f3

f4




= (iβ −A)−1F (4.1.2)

We want to show |β| ‖U‖H ≤ C ‖F‖H.

By assumption 4.1.1, {eAt}t≥0 is exponentially stable, then:

‖U‖H ≤ C ‖F‖H (4.1.3)





iβu1 − u2 = f1

iβu3 − u4 = f3

iβu2 −∆u1 − kΩ∆u2 + cΩu4 = f2

iβu4 + ∂n(u1 + kΩu2) +Bu3 + αBu4 + cΓu4 = f4

(4.1.4)

Multiply the third equation by u2 and make use of the fourth equation:

iβ |u2|2Ω + (∇u1,∇u2)Ω + kΩ |∇u2|2Ω + cΩ |u2|2Ω

+ 〈iβu4 +Bu3 + αBu4 + cΓu4 − f4, u2〉Γ1
= (f2, u2)Ω

(4.1.5)
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Using the first equation, observe that the term (∇u1,∇u2)Ω can be rewritten as:

(∇u1,∇u2)Ω = (∇u1, iβ∇u1 −∇f1)Ω

= −iβ |∇u1|2Ω − (∇u1,∇f1)Ω
(4.1.6)

Similarly, using the third equation, we have:

〈Bu3, u2〉Γ1
=
〈
B

1

2u3, B
1

2u4

〉

Γ1

=
〈
B

1

2u3, iβB
1

2u3 − B
1

2f3

〉
Γ1

= −iβ
∣∣∣B

1

2u3

∣∣∣
2

Γ1

−
〈
B

1

2u3, B
1

2 f3

〉
Γ1

(4.1.7)

In (4.1.5), substitute 〈Bu3, u2〉Γ1
and (∇u1,∇u2)Ω by (4.1.6) and (4.1.6), respec-

tively:

iβ

[
|u2|2Ω + |u4|2Γ1

− |∇u1|2Ω −
∣∣∣B

1

2u3

∣∣∣
2

Γ1

]
+ kΩ |∇u2|2Ω + cΩ |u2|2Ω + α

∣∣∣B
1

2u4

∣∣∣
2

Γ1

+ cΓ |u4|2Γ1

= (f2, u2)Ω + (f4, u4)Ω + (∇u1,∇f1)Ω +
〈
B

1

2u3, B
1

2 f3

〉
Γ1

(4.1.8)

Taking the real part, one gets:

kΩ |∇u2|2Ω + cΩ |u2|2Ω + α
∣∣∣B

1

2u4

∣∣∣
2

Γ1

+ cΓ |u4|2Γ1

≤ | (f2, u2)Ω + (f4, u4)Ω + (∇u1,∇f1)Ω +
〈
B

1

2u3, B
1

2 f3

〉
Γ1

|

≤ C ‖F‖H ‖U‖H

≤ C ‖F‖2H , by (4.1.3)

(4.1.9)

Using the first two equations in (4.1.4) and applying estimate (4.1.9):




β|∇u1|Ω ≤ |∇u2|Ω + |∇f1|Ω ≤ C
kΩ

‖F‖H

β|B 1

2u3|Γ1
≤ |B 1

2u4|Γ1
+ |B 1

2 f3|Γ1
≤ C

α
‖F‖H

(4.1.10)
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Let K = min{kΩ, α}, then, with estimate (4.1.9), (4.1.10) becomes:

β
[
|∇u1|Ω + |B 1

2u3|Γ1

]
≤ C

K
‖F‖H (4.1.11)

Note that the presence of K on the denominator forces both damping coefficients

(kΩ, α) to be non-zero.

Back to (4.1.8), multiply by β and take the imaginary part:

β2
[
|u2|2Ω + |u4|2Γ1

]
≤ β2

[
|∇u1|2Ω +

∣∣∣B
1

2u3

∣∣∣
2

Γ1

]

+ |f2|Ω|βu2|Ω + |∇f1|Ω|β∇u1|Ω + |B 1

2 f3|Γ1
|βB 1

2u3|Γ1
+ |f4|Γ1

|βu4|Γ1

(4.1.12)

Splitting: 



|f2|Ω|βu2|Ω ≤ Cǫ |f2|2Ω + ǫ |βu2|2Ω

|f4|Γ1
|βu4|Γ1

≤ Cǫ |f4|2Γ1
+ ǫ |βu4|2Γ1

(4.1.13)

Using (4.1.10) to estimate the first terms on the right-hand side of (4.1.12):

β2
[
|u2|2Ω + |u4|2Γ1

]
≤ C(

1

K
+ 1) ‖F‖2H (4.1.14)

Combine (4.1.11) with (4.1.14)

|β|2
[
|∇u1|2Ω + |u2|2Ω +

∣∣∣B
1

2u3

∣∣∣
2

Γ1

+ |u4|2Γ1

]
= |β|2 ‖R(iβ −A)‖2L(H)

≤ C(
1

K
+ 1) ‖F‖2H

(4.1.15)

It follows that {eAt}t≥0 is analytic on H, provided kΩ, kΓ, α > 0.

4.1.2 Perturbation approach via Wentzell semigroup

As we mentionned before, our problem is also related to the Wentzell problem [19, 20,

23]. By transforming our model (GM) into a heat equation with General Wentzell
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Boundary Condtions, we are able not only to recover the previous result but also to

extend it to the space:

Hp = {(u1, u2, u3, u4) ∈ W 1,p
Γ0

(Ω)× Lp(Ω)×W 1,p(Γ1)× Lp(Γ1), u1|Γ1
= u3}

for all 1 < p < ∞. Again, it is necessary to impose some conditions on the damping

coefficients. However, this theorem allows us to relax the assumption 4.1.1 from

theorem 4.1.2 and thus obtain a stronger result.

Assumption 4.1.3. The strong damping in the interior is strictly positive (kΩ > 0)

and one of the following holds:

• kΓα > 0

• kΓ = 0

We note that this theorem is more general than 4.1.2.

Theorem 4.1.4. Suppose that assumption 4.1.3 holds.

Consider A given by in (2.2.4), then A generates an analytic C0-semigroup {eAt}t≥0

on Hp, for 1 < p <∞.

First of all, we recall our general model (GM) with kΩ, α > 0:




utt + cΩut − kΩ∆ut −∆u = 0 x ∈ Ω, t > 0

u(x, t) = 0 x ∈ Γ0, t > 0

utt + cΓut + ∂n(u+ kΩut)− kΓ∆Γ(αut + u) = 0 x ∈ Γ1, t > 0

u(0, x) = u0, ut(0, x) = u1 x ∈ Ω

(GM)
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Among the possible scenarii offered by (GM) two are parcicularly relevant for this

Wentzell approach:

Scenario 1: kΩ > 0, kΓ = 0 which corresponds to the absence of Laplace Beltrami

operator on the boundary. In that case the result has been known (see [28, Theorem

3.5 (ii)] and references therein), however our more general proof will also yield the

expected conclusion.

Scenario 2. kΩ, kΓ, α > 0 corresponds to the presence of Laplace Beltrami operator

with additional strong damping on the boundary α > 0. It is an alternate proof to

the previous theorem.

Our proof is based on connecting the problem under consideration to Wentzell semi-

groups studied in [19, 20] and a private communication with J. Goldstein [26]. To

this end we introduce the new variable:

z = u+ kΩut on Ω and Γ1
(4.1.16)

We recall from the definition 2.1.3 that B = −kΓ∆Γ, then the two first equations of

(GM) are equivalent to:






ut +
u
kΩ

= z
kΩ

in Ω

ut|Γ1
+

u|Γ1

kΩ
=

z|Γ1

kΩ
in Γ1

zt
kΩ

= ∆z + z−u
k2
Ω

− cΩ
z−u
kΩ

in Ω

with ∆z + ∂nz − kΓα
kΩ

∆Γz − kΓ(1− α
kΩ
)∆Γu− cΓ

z−u
kΩ

= 0 in Γ1

(4.1.17)

Note that the first two equations are simply an ordinary differential equation, so we
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can let

U ≡ (u, u|Γ1
) ∈ Xu = {(u|Ω, u|Γ1

) ∈ W 1,p
Γ0

(Ω)×W 1,p(Γ1), γ(u) = u|Γ1
}

with the associated norm:

‖U‖2Xu
= |∇u|2Ω Lp(Ω)2 +

∥∥∥B
1

2uΓ1

∥∥∥
2

Lp(Γ1)

Thus Xu is a closed subspace of W 1,p(Ω)×W 1,p(Γ1).

Consider the abstract ODE

Vt +
1

kΩ
V = 0, V (0) ∈ Xu

and denote by T (t) the governing semigroup. This semigroup is obviously analytic

on Xu and is given by T (t)V = e
− 1

kΩ
t
V.

‖T (t)U0‖Xu
=
∥∥T (t)u0|Ω

∥∥
W 1,p

Γ0
(Ω)

+
∥∥T (t)u0|Γ1

∥∥
W 1,p(Γ1)

≤ e
− 1

kΩ
t

[∥∥u0|Ω
∥∥
W 1,p

Γ0
(Ω)

+
∥∥u0|Γ1

∥∥
W 1,p(Γ1)

]

≤ e
− 1

kΩ
t ‖U0‖Xu

Since ‖Vt(t)‖Xu
≤ C ‖V0‖Xu

, then T (t) is an analytic C0-semigroup on Xu .

Note that the solution to the first two equations of 4.1.17 can be written as a pertur-

bation:

Ut +
1

kΩ
U =

1

kΩ
Z, U(0) = U0 where Z ≡ (z|Ω, γ(z))
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Thus, by the variation of parameter formula we obtain:

U(t) = T (t)U0 +

∫ t

0

T (t− s)Z(s)ds (4.1.18)

The caveat is that the above equation is considered on Xu which means that with

z ∈ Lp(Ω) one obtains unbounded forcing in (4.1.18). However, the analyticity of the

semigroup will help in handling this part.

Before we move back to the system (4.1.17), we need to do some preliminary work

on the z-dynamics by presenting the definitions from Favini et al. work in [20, 19]

Definition 4.1.5 (Xp). Identify every z ∈ C(Ω̄) with z = (z|Ω, z|Γ1
) and define Xp

to be the completion of C(Ω̄) in the norm:

|‖z|‖p :=
(∫

Ω

|u|Ω|p dx+
∫

Γ1

|u|Γ1
|p dS

) 1

p

(4.1.19)

for 1 < p <∞.

Remark 4.1.2. In general, a member of Xp is H = (f, g), where f ∈ Lp(Ω), g ∈

Lp(Γ1). Note that f may not have a trace on Γ1, and even if f does, this trace needs

not equal g.

Also, define the formal Laplacian operator A with General Wentzell Boundary Con-

ditions (GWBC) by:

Au =

N∑

i,j=1

∂i(aij(x)∂ju) in Ω (4.1.20)

Az + β∂nz + ηz − ζβ∆Γz = 0 on δΩ (4.1.21)
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In [19, Theorem 3.1], the authors showed that the heat equation with GWBC and

ζ = 0 was governed by an analytic semigroup in Xp for p = 2. Then, in [20], Favini

has offered two extensions of this first result:

• Theorem 3.2 [20] states that the heat equation with GWBC is governed by

an analytic semigroup in Xp for p = 2, i.e., the Laplace-Beltrami term on the

boundary is added.

• Theorem 3.3 [20] states that the heat equation with GWBC and ζ = 0 is

governed by an analytic semigroup in Xp for 1 < p <∞, i.e., the analyticity is

no longer restricted to L2-theory.

Therefore, the use of theorem 3.2 should allow us to recover analyticity in H as we

demonstrated with the resolvent approach (see theorem 4.1.2) relaxing the condition

on kΓ. On the other hand, the use of theorem 3.3 should allow us to achieve analyticity

in Hp under the additional condition: kΓ = 0. Furthermore, J. Goldstein and M.

Pierre are about to publish the following result in [26], which is an extention of [20,

Theorem 3.3]:

Theorem D (Goldstein - Pierre [26]). The closure Gp of the realization Ap of A in

Xp with domain

D(Ap) = {z = (z|Ω, z|δΩ) ∈ D(A2) ∩Xp z|δΩ satisfies (4.1.21)}

is analytic on Xp for 1 < p <∞.
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Set β = kΩ, η = (cΓ − cΩ), ζβ = kΓα and rewrite (4.1.17) using the operator

A = kΩ∆:






ut +
u
kΩ

= z
kΩ

in Ω

γ(ut) + γ( u
kΩ
) = γ( z

kΩ
) in Γ1

zt = Az + ( 1
kΩ

− cΩ)(z − u) in Ω

with Az + kΩ∂nz + (cΓ − cΩ)z − kΓα∆Γz = kΓ(kΩ − α)∆Γu+ (cΓ − cΩ)u in Γ1

(4.1.22)

Observe that the two last equations in (4.1.22) corresponds to the heat equation

(4.1.20) with General Wentzell Boundary Conditions (4.1.21) perturbed on Ω by

z
kΩ

− u
kΩ

and on Γ1 by −kΓ(kΩ − α)∆Γu|Γ1
− (cΓ − cΩ)u|Γ1

.

Remark 4.1.3. Note that the fourth equation can be rewritten as an evolution equa-

tion in γ(z) :

zt = −kΩ∂nz + kΓα∆Γz + (
1

kΩ
− cΓ)(z − u) + kΓ(kΩ − α)∆Γu (4.1.23)

This way of writing makes a connection with evolution equations governed by dynamic

boundary conditions.

We define the space Hu,z by the cross product between Xu and Xp.

Remark 4.1.4. For p = 2, the space Hu,z and H are equivalent after reordering the

components.
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To show the analyticity of (4.1.22) on Hu,z = Xu × Xp , we will proceed in two

steps: first, we show that the system without the Laplace-Beltrami perturbed terms

from Γ1 is analytic. Note that lemma 4.1.6 corresponds to the case where the strong

damping in the interior and the boundary are matching (kΓα = kΩ). Then, we will

show that the analyticity with the perturbation on Γ1 is preserved (Lemma 4.1.7)

The system given in (4.1.22) can be written in a compact form as




Ut +
1
kΩ
U = 1

kΩ
Z

Zt +GpZ = K(Z − U) + P (γ(u))

(4.1.24)

where P (γ(u)) ≡




0

kΓ(kΩ − α)∆Γγ(u)


 and K =



( 1
kΩ

− cΩ) 0

0 ( 1
kΩ

− cΓ)




We begin the analysis with unperturbed system. We shall show that the associated

semigroup inherits analyticity properties from Wentzell semigroup.

Lemma 4.1.6. Given the system:




ut +
u
kΩ

= z
kΩ

in Ω

γ(ut) + γ( u
kΩ
) = γ( z

kΩ
) in Γ1

zt = Az + ( 1
kΩ

− cΩ)(z − u) in Ω

with Az + kΩ∂nz − kΓα∆Γz = (cΓ − cΩ)u in Γ1

(4.1.25)

where (u|Ω, u|Γ1
, z|Ω, z|Γ1

)T ∈ H1
Γ0
(Ω) × D(B1/2) × D(G

1

2
p ). Then the following in-

equality holds,

‖Ut(t)‖Xu
+ ‖Zt(t)‖Xp

≤ C0 ‖U0‖Xu
+
C1

t
‖Z0‖Xp

(4.1.26)
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It follows that the semigroup associated generates an analytic C0-semigroup on Hu,z.

Proof. By theorem (D), the domain D(G
1

2
p ) is contained inW 1,p

Γ0
(Ω)×W 1− 1

p
,p(Γ1) and

we have the following relationship, using interpolation theorem:

‖Z(t)‖pXu
= ‖z(t)‖pW 1,p(Ω) ≤

∥∥∥G
1

2
pZ(t)

∥∥∥
p

Xp

≤
(

1√
t
‖Z0‖Xp

)p

(4.1.27)

By the variation of paramters, the first two equations of (4.1.25) have a solution U(t)

in Xu such that:

‖U(t)‖Xu
≤ e

− 1

kΩ
t ‖U0‖Xu

+

∫ t

0

e
− 1

kΩ
(t−s) ‖Z(s)‖Xu

ds

≤ C ‖U0‖Xu
+ C

∫ t

0

e
− 1

kΩ
(t−s)

∥∥∥G
1

2

2Z(s)
∥∥∥
Xp

ds

≤ C ‖U0‖Xu
+ C

∫ t

0

e
− 1

kΩ
(t−s) 1√

s
‖Z0‖Xp

ds

≤ C
[
‖U0‖Xu

+ ‖Z0‖Xp

]
since e

− 1

kΩ
(t−s) 1√

s
∈ L1(0, T )

(4.1.28)

Note that the abstract form of the system (4.1.25) is defined in (4.1.24) where the

term P (γ(u)) is omitted. Then the desired estimate is obtained by combining (4.1.27)

and (4.1.28):

‖Ut(t)‖Xu
+ ‖Zt(t)‖Xp

≤ 1

kΩ
‖Z(t)− U(t)‖Xu

+ ‖K(Z(t)− U(t))‖Xp
+ ‖G2Z(t)‖Xp

≤ C
[
‖U(t)‖Xu

+ ‖Z(t)‖Xu

]
+ ‖G2Z(t)‖Xp

≤ C

[
‖U0‖Xu

+ (1 +
1√
t
) ‖Z0‖Xp

]
+

1

t
‖Z0‖Xp

(4.1.29)

which completes the proof of equation (4.1.26), implying analyticity of the corre-

sponding semigroup on Hu,z.
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Let S be the generator of the analytic semigroup governing model (4.1.25) on the

space Hu,z = Xu ×Xp with the domain:

D(S) = {V = (u|Ω, u|Γ1
, z|Ω, z|Γ1

)T ∈ W 1,p
Γ0

(Ω)×W 1,p(Γ1)×D(G
1

2
p )}

Then the original system (4.1.22) with the fourth equation replaced by (4.1.23) is

equivalent to:

Vt = (S+ P)V (4.1.30)

where

S =



−J J

K K + L


 with J =

1

kΩ



1 0

0 1


 , L =




G2 0

−kΩ∂n kΓα∆Γ




P =



02×2 02×2

M 02×2


 with M =



0 0

0 kΓ(kΩ − α)∆Γ




Using a perturbation argument, it remains to show that the semigroup generaetd by

S+ P is analytic, which is the purpose of the following lemma.

Lemma 4.1.7. The semigroup generated by S+ P is analytic on Hp.

Proof. Without loss of generality, assume that kΓ = 0, otherwise P = 0.

Let V = (U,Z) = (u|Ω, u|Γ1
, z|Ω, z|Γ1

) ∈ W 1,p
Γ0

(Ω) × W 1,p(Γ1) × Xp, with V0 =

(u0|Ω, u0|Γ1
, z0|Ω, z0|Γ1

) be solution of (4.1.30), then

V (t) = eStV0 +

∫ t

0

eS(t−τ)
PV (τ)dτ (4.1.31)
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Taking the Laplace Transform

V (λ) = R(λ, S)V0 +R(λ, S)PV (λ) (4.1.32)

leads to the following relation:

[I −R(λ, S)P]V (λ) = R(λ, S)V0 (4.1.33)

Thus, S + P generates an analytic C0-semigroup if and only if [I −R(λ, S)P] is in-

vertible. This last statement follows from:

V (λ) = [I −R(λ, S)P]−1R(λ, S)V (0) (4.1.34)

and the estimate:

‖R(λ, S)‖L(Hu,z)
≤ C|λ|−1 (4.1.35)

Thus it is enough to check ‖R(λ, S)PV ‖Hu,z
≤ 1

2
, for |λ| large:

‖R(λ, S)PV ‖Hu,z
=
∥∥∥R(λ, S)S

1

2S
− 1

2PV
∥∥∥
Hu,z

≤
∥∥∥S

1

2R(λ, S)
∥∥∥
L(Hp)

∥∥∥S− 1

2PV
∥∥∥
Hu,z

≤ 1√
λ

∥∥∥S− 1

2PV
∥∥∥
Hu,z

(4.1.36)

since S generates an analytic semigroup on Hu,z.

It remains to bound the second term:
∥∥∥S− 1

2PV
∥∥∥
Hu,z

.

For all φ = (φ1, φ2, φ3, φ4)
T ∈ D(S

1

2 ) ⊂ W 1,p
Γ0

(Ω) × W 1,p(Γ1) × D(G
1

2
p ), define ϕ =

(ϕ1, ϕ2, ϕ3, ϕ4) = [S− 1

2 ]∗φ ∈ D(S
1

2 ) ⊂ W 1,p
Γ0

(Ω)×W 1,p(Γ1)×D(G
1

2
p ), It follows:

∥∥∥S
1

2ϕ
∥∥∥
Hu,z

≤ C ‖φ‖Hu,z
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Then, it remains to estimate
(
S
− 1

2PV, φ
)

Hu,z

:

(
S
− 1

2PV, φ
)
Hu,z

= (PV, ϕ4)Hu,z

≤ (kΓ(kΩ − α)∇Γu|Γ1
,∇Γϕ4)Lp(Γ1)

≤ C ‖u|Γ1
‖W 1,p(Γ1)

‖ϕ4‖W 1,p(Γ1)

≤ C ‖U‖Hu,z
‖φ‖Hu,z

(4.1.37)

By choosing λ > r2 with r sufficiently large:

‖R(λ, S)PV ‖Hu,z
≤ C

r
‖V ‖Hu,z

⇒ ‖[I −R(λ, S)P]‖L(Hu,z)
≥ 1

2

Therefore, A generates an analytic semigroup {eAt}t≥0 on Hp, provided one of the

following condition:

• kΩ, α > 0

• No additional condition on kΓ, cΩ, cΓ, i.e., they are all non-negative

We conclude this section by illustrating these results with the 4.1 [p. 91] representing

the spectrum of (GM) with kΩ > 0 and all other coefficients set to zero (cΩ = cΓ =

kΓ = α = 0). We observe that the eigenvalues describe a circle centered at the point

X such that ReX = −1/kΩ similarly to the 1.3 [p. 19] corresponding to a strong

damped wave equation with Dirichlet boundary. We also recall 1.4 [p. 20] showing

the spectrum of (GM) with kΩ, kΓ, α > 0 as the values of kΩ and kΓ change. For both
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cases eigenvalues obey to the same pattern. Hence, we can in these two cases enclosed

the eigenvalues into a triangular sector confirming the analyticity of the semigroup

governing these systems.

kΩ = 0.12

kΓ = 0

α = 0

Imaginary Axis

Real Axis   

5i

0−14







utt − kΩ∆ut −∆u = 0 on Ω

utt +
δ(kΩut+u)

δη
− kΓ∆Γ(αut + u) = 0 on Γ1

u = 0 on Γ0

Figure 4.1: Spectrum of a strongly damped wave equation with DBC without Laplace

Beltrami term on the boundary.. Eigenvalues of (VM) with only interior damping

(kΓ, kΩ > 0 and α = 0).

4.2 Gevrey Semigroup

Now the analyticity is established for (GM) under some conditions, it is a primary

concern to determine how the regularity of the system is affected when we relax the
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conditions (assumption 4.1.3). We start by keeping the strong damping in the inte-

rior, i.e. kΩ > 0 but we now impose α = 0. Therefore, is analyticity achieved with

strong damping only in the interior ?

Without loss of generality, we assume that kΓ > 0, otherwise the semigroup is ana-

lytic by the previous section. The first important observation is that the two proofs

presented in the previous section failed to demonstrate the analyticity in such a case

since there is no control of the elastic energy ∆Γu on Γ1. Indeed, with the resolvent

approach the absence of strong damping decimate the control of β |u4|2Γ1
(see equation

(4.1.13)). As a Wentzell problem, the analyticity also failed as the absence of ∆Γut

terms on the boundary implies that we can not operate to the change of variable for

the term ∆Γu. It follows that after the change of variable, the corresponding heat

equation with general Wentzell boundary condition is of the form:

zt = Az + (
1

kΩ
− cΩ)(z − u) in Ω

with Az + kΩ∂nz + (cΓ − cΩ)z = kΓkΩ∆Γu+ (cΓ − cΩ)u in Γ1

(4.2.1)

On the left hand side, we observe that there is no more Laplace-Beltrami term, thus,

preventing from the control of ∆Γu on the right hand side. We will only partially an-

swer to the initial question by claiming the expected result based on the observation

of the numerical spectrum, see figure 4.2.

We observe that the absence of damping on the boundary has a non-negligeable im-

pact on the spectrum of (GM), see figures 1.4 [p. 20], 4.1 [p. 91] for the comparaison.

Indeed, the circle shape is still present and corresponds to the analytic behavior of
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kΓ = 1

α = 0

kΩ = 0.02
Imaginary Axis

Real Axis   

27i

0−18







utt − kΩ∆ut −∆u = 0 on Ω

utt +
δ(kΩut+u)

δη
− kΓ∆Γ(αut + u) = 0 on Γ1

u = 0 on Γ0

Im|λ| = 21.6(Re|λ|)2 − 58.3(Re|λ|) +1.14kΓ = 1

α = 0

kΩ = 0.02
Imaginary Axis

Real Axis   

27i

0−18







utt − kΩ∆ut −∆u = 0 on Ω

utt +
δ(kΩut+u)

δη
− kΓ∆Γ(αut + u) = 0 on Γ1

u = 0 on Γ0

Im|λ| = 21.6(Re|λ|)2 − 58.3(Re|λ|) +1.14

Figure 4.2: Spectrum for a Gevrey semigroup. Eigenvalues of (VM) with kΩ > 0 and

kΓ, α = 0.

the interior, however, a new parabolic-like component appears and indicate that the

semigroup governing this partiuclar system is not analytic anymore. We point out

that the parabola is of the form |Imλ| = a−b×|Reλ|2. Nevertheless, this component

shows that the system keep some smoothing property from paraboliticy. We expect

the semigroup to be in a class between differentiability and analyticity, and related to

the theory of Gevrey Semigroups [54]. As for characterization of analyticity, Gevrey’s

regularity is described in terms of the bounds on all derivatives of the semigroup:

Definition 4.2.1 (Gevrey Semigroup). Let T (t) be a strongly continuous semigroup

on a Banach space X and let δ > 1. We say that T (t) is of Gevrey class δ for t > t0
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if T (t) is infinitely differentiable for t ∈ (t0,∞) and for every compact K ⊂ (t0,∞),

and each θ > 0, there exists a constant C = Cθ,K such that

∥∥T (n)(t)
∥∥ ≤ Cθn(n!)δ, ∀t ∈ K and n ∈ {0, 1, 2, ...}

Besides other characterizations, the author provided some sufficient conditions for

semigroups to be of Gevrey class.

Theorem E (Taylor’s Dissertation: [54]). Let T (t) be a strongly continuous semi-

group satisfying ‖T (t)‖ ≤ Meωt. Assume one of the following holds:

• Suppose that for some γ satisfying 0 < γ ≤ 1:

lim sup
β→∞

|β|γ ‖R(iβ;A)‖ = C <∞ (4.2.2)

• Suppose that:

lim
t↓0

tδ ‖T ′(t)‖ = 0 (4.2.3)

Then T (t) is of Gevrey class δ for t > 0 (for every δ > 1
γ
for the first item).

The resolvent characterization relies on the contour shape formed by the eigen-

values whose imaginary parts tend to infinity. More precisely, the eigenvalues describ

of polynomial-type curve for which the degree of the polynomial is δ. Back to our

problem, we identify on 4.2 [p. 93] such a parabolic component which suggests that

the semigroup should of Gevrey class δ = 2. This remark has not yet been proved, but
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the picture suggests further investigation in this direction should lead to a positive

conclusion.

It is also important to note from Theorem E that for γ = 1 the semigroup is analytic.

This class of semigroup offers an intermediate level between analytic semigroup and

differentiable semigroup.

Remark 4.2.1. While a differentiable semigroup is not stable under bounded pertur-

bation, as it is demonstrated by Renardy in [51], if B ∈ H and one of the charac-

terizations from theorem E then not only A is Gevrey but also A + B. This can be

seen by using a similar argument as for perturbation of analytic semigroup by bounded

operator (see [49, Theorem III.3.2.1]).

One could summarize the connection between these different classes of semigroup

with the following tree:

Analytic→ Theorem E → Gevrey → Differentiable

S. Taylor and W. Littman used Gevrey’s regularity to study smoothing properties in

the context of plate and Schrodinger equations [41, 43, 55]. We also refer the reader

to [32, 33, 38, 43] for other applications of Gevrey regularity.

The semigroup A defined with kΩ, kΓ > 0, α = 0 is not analytic but numerics suggest

that it is Gevrey, thus we leave the following open question to the reader: is the

semigroup A defined with kΩ, kΓ > 0, α = 0 Gevrey ?
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We do not go further in the investigation of regularity for this model. We will come

back to the study of (GM) in the absence of viscoelastic damping in the interior

(kΩ = 0), in chapter 5. In fact, without interior damping no regularity result is

expected but more interestingly the long-time behavior of the solution is greatly

affected as we shall see soon (see figure 5.2 [p. 120]).

4.3 Spectral analysis

As it was observed on all the figures presented so far, our model (GM) seems to

have an important spectral property: the absence of spectrum on the imaginary

axis. We shall investigate the conditions under which the property does hold. A

classical strategy in demonstrating this strategy is to verify that the intersection of

the imaginary axis with each spectrum is empty, i.e., the point spectrum σp(A), the

continuous spectrum σc(A) and the residual spectrum σr(A). We refer the reader to

the paper [4] for similar technics. Furthermore, the verification for the continuous

and residual spectrums can be achieved using the following properties.

• If λ ∈ σc(A), then A − λ does not have a closed range. [22, Problem 2.54 p.

128]

• If the eigenvalue λ ∈ C is in the residual spectrum of A, then λ ∈ σp(A∗)[22, p.

127]:
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Thus, before moving to the main result of this section, it is necessary to compute the

adjoint of the operator A in order to verify the property for the residual spectrum.

We will use the formal characterization the Laplacian which we recall: −∆u = A(I−

N∂n)u (see remark 2.2.1) and we display again for reference the operator A defined

in (2.2.4) taking account of this Laplacian characterization.

A =




0 I 0 0

−A(I −N∂n) DΩ 0 0

0 0 0 I

−∂n −kΩ∂n −B DΓ1




where





DΩ = −kΩA(I −N∂n)− cΩI

DΓ1
= −αB − cΓI

Lemma 4.3.1 (Adjoint of A). With A as defined in (2.2.4) and using the notation

−∆u = A(I −N∂n)u, the adjoint A∗ is given to be

A∗ =




0 −I 0 0

A(I −N∂n) DΩ 0 0

0 0 0 −I

∂n −kΩ∂n B DΓ1




where





DΩ = −kΩA(I −N∂n)− cΩI

DΓ1
= −αB − cΓI

(4.3.1)
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D(A∗) ={[u1, u2, u3, u4]T ∈ D(A
1

2 )×D(A
1

2 )×D(B
1

2 )×D(B
1

2 ),

such that A(I −N∂n)(u1 − kΩu2)− cΩu2 ∈ L2(Ω),

∂n(u1 − kΩu2) +B
1

2 (B
1

2u3 − αB
1

2u4)− cΓu4 ∈ L2(Γ1),

u1|Γ1
= N∗Au1 = u3 and u2|Γ1

= N∗Au2 = u4}

Proof. Let

S = {{[y1, y2, y3, y4]T ∈ D(A
1

2 )×D(A
1

2 )×D(B
1

2 )×D(B
1

2 ),

such that A(I −N∂n)(y1 − kΩy2)− cΩy2 ∈ L2(Ω),

∂n(y1 − kΩy2) +B
1

2 (B
1

2y3 − αB
1

2y4)− cΓy4 ∈ L2(Γ1),

y1|Γ1
= N∗Ay1 = yu3 and y2|Γ1

= N∗Ay2 = y4}

Step 1: Show that S is a subset of D(A∗) and that there exists Λ such that A∗|S = Λ

Then ∀U ∈ D(A), Y = [y1, y2, y3, y4]
T ∈ S:

(AU, Y )
H⊂D(A

1
2 )×L2(Ω)×D(B

1
2 )×L2(Γ1)

=

(
A

1

2u2, A
1

2y1

)

L2(Ω)
− (A(u1 −N∂nu1), y2)[D(A

1
2 )]∗×D(A

1
2 )

− kΩ (A(u2 −N∂nu2), y2)[D(A
1
2 )]∗×D(A

1
2 )
− cΩ (u2, y2)L2(Ω)

+ α
(
B

1

2u4, B
1

2y3

)

L2(Γ1)
− (∂nu1, y4)L2(Γ1)

− kΩ (∂nu2, y4)L2(Γ1)

− (Bu3, y4)[D(B
1
2 )]∗×D(B

1
2 )
− α (Bu4, y4)[D(B

1
2 )]∗×D(B

1
2 )
− cΓ (u4, y4)L2(Γ1)

(4.3.2)

The goal is to identify an operator Λ such that (AU, Y )H = (U,ΛY )H, in other words,

we reconstruct U = (A
1

2u1, u2, B
1

2u3, u4)
T with the first component of the inner prod-

ucts in (4.3.2).
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(AU, Y )H = (u2, A(y1 −N∂ny1))D(A
1
2 )×[D(A

1
2 )]∗

+ (u4, ∂ny1)L2(Γ1)

−
(
A

1

2u1, A
1

2 y2

)
L2(Ω)

+ (∂nu1, N
∗Ay2)L2(Γ1)

− kΩ

(
A

1

2u2, A
1

2y2

)
L2(Ω)

+ kΩ (∂nu2, N
∗Ay4)L2(Γ1)

− cΩ (u2, y2)L2(Ω)

+ (u4, By3)D(B
1
2 )×[D(B

1
2 )]∗

− (∂nu1, y4)L2(Γ1)
− kΩ (∂nu2, y4)L2(Γ1)

−
(
B

1

2u3, B
1

2 y4

)
L2(Γ1)

− α (u4, By4)[D(B
1
2 )]∗×D(B

1
2 )
− cΓ (u4, y4)L2(Γ1)

= (u2, A(y1 −N∂ny1))D(A
1
2 )×[D(A

1
2 )]∗

−
(
A

1

2u1, A
1

2 y2

)

L2(Ω)

− kΩ (u2, A(y2 −N∂ny2))D(A
1
2 )×[D(A

1
2 )]∗

− cΩ (u2, y2)L2(Ω)

+ (u4, ∂ny1)L2(Γ1)
− kΩ (u2, ∂ny2)L2(Γ1)

+ (u4, By3)D(B
1
2 )×[D(B

1
2 )]∗

−
(
B

1

2u3, B
1

2y4

)
L2(Γ1)

− α (u4, By4)D(B
1
2 )×[D(B

1
2 )]∗

− cΓ (u4, y4)L2(Γ1)

= (u,Λy)H

(4.3.3)

where Λ is defined in its matrix form by:

Λ =




0 −I 0 0

A(I −N∂n) DΩ 0 0

0 0 0 −I

∂n −kΩ∂n B DΓ1




with





DΩ = −kΩA(I −N∂n)− cΩI

DΓ1
= −αB − cΓI

Therefore, S ⊆ D(A∗) and A∗|S = Λ
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Step 2: Show that D(A∗) ⊆ S.

Suppose that λ ∈ C with Reλ > 0, to show the opposite containment, it is enough to

verify that ∀F = (f1, f2, f3, f4)
T ∈ H there exists Y = (y1, y2, y3, y4)

T ∈ D(A∗) such

that

λY −A∗Y = F ∈ H (4.3.4)





λy1 + y2 = f1

λy2 − A(I −N∂n)y1 + kΩA(I −N∂n)y2 + cΩy2 = f2

λy3 + y4 = f3

λy4 − ∂ny1 + kΩ∂ny2 −By3 + αBy4 + cΓy4 = f4

(4.3.5)

Use the first and third equation to operate change of variables for y2 and y4:





y2 = f1 − λy1

y4 = f3 − λy3

−λ2y1 − A(I −N∂n)y1 − λkΩA(I −N∂n)y1 − λcΩy1

= f2 − [λ+ kΩA(I −N∂n) + cΩ] f1

−λ2y3 − ∂ny1 − λkΩ∂ny1 − By3 − αBy3 − cΓy3

= f4 − kΩ∂nf1 − (λ+ αB + cΓ)f3

(4.3.6)

To solve the stationnary problem (4.3.6), we shall use a weak formulation and Lax-

Milgram theorem. Let (v1, v2, v3, v4)
T ∈ D(A∗) and for the time being let F =

(f1, f2, f3, f4) ∈ D(A∗). Later we shall extend the argument by density to all F ∈ H.
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We consider the two last equations of (4.3.6), multiply them by v1 and v3, respec-

tively:

−
(
λ2y1, v1

)
Ω
− (1 + λkΩ) (A(I −N∂n)y1, v1)Ω − λcΩ (y1, v1)Ω

−
〈
λ2y3, v3

〉
Γ1

− (1 + λkΩ) 〈∂ny1, v3〉Γ1
− (1 + λα) 〈By3, v3〉Γ1

− λcΓ 〈y3, v3〉Γ1

= (f2 − λf1 − kΩA(I −N∂n)f1 − cΩf1, v1)Ω

+ 〈f4 − λf3 − kΩ∂nf1 − αBf3 − cΓf3, v3〉Γ1

(4.3.7)

Rewriting, we obtain:

−
(
λ2y1, v1

)
Ω
− (1 + λkΩ)

(
A

1

2y1, A
1

2 v1

)

Ω
− λcΩ (y1, v1)Ω

−
〈
λ2y3, v3

〉
Γ1

− (1 + λα)
〈
B

1

2 y3, B
1

2v3

〉
Γ1

− λcΓ 〈y3, v3〉Γ1

= (f2 − λf1, v1)Ω − kΩ

(
A

1

2 f1, A
1

2 v1

)
Ω
− cΩ (f1, v1)Ω

+ 〈f4 − λf3, v3〉Γ1
− α

〈
B

1

2f3, B
1

2v3

〉

Γ1

− cΓ 〈f3, v3〉Γ1

(4.3.8)

This leads us to consideration of a bilinear form

a(y1, y3, v1, v3) ≡ −
(
λ2y1, v1

)
Ω
− (1 + λkΩ)

(
A

1

2 y1, A
1

2 v1

)
Ω
− λcΩ (y1, v1)Ω

−
〈
λ2y3, v3

〉
Γ1

− (1 + λα)
〈
B

1

2y3, B
1

2v3

〉
Γ1

− λcΓ 〈y3, v3〉Γ1

defined for y = (y1, y3), v = (v1, v3) ∈ V ≡ {(v1, v3) ∈ D(A
1

2 )×D(B
1

2 ), v3 = v1|Γ1
}.

We are solving for the variable u the variational equation:

a(y, v) = F (v), ∀v ∈ V ≡ D(A
1

2 )×D(B
1

2 )
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where F (v) be the corresponding right-hand side (in equation (4.3.8)):

F (v) = (f2 − λf1, v1)Ω − kΩ

(
A

1

2f1, A
1

2v1

)
Ω
− cΩ (f1, v1)Ω

+ 〈f4 − λf3, v3〉Γ1
− α

〈
B

1

2 f3, B
1

2 v3

〉

Γ1

− cΓ 〈f3, v3〉Γ1

with F = (f1, f2, f3, f4) ∈ H

We have continuity of bilinear form on V × V:

|a(y, v)| ≤ C ‖y‖V ‖v‖V

|F (V )| ≤ C ‖F‖H ‖v‖V
(4.3.9)

The bilinear form is coercive:

Re a(u, u) = λ2 |y1|2Ω + (1 + λkΩ)
∣∣∣A

1

2 y1

∣∣∣
2

Ω
+ λcΩ |y1|2Ω

+ λ2 |y3|2Γ1
+ (1 + λα)

∣∣∣B
1

2 y3

∣∣∣
2

Γ1

+ λcΓ |y3|2Γ1

≥ C ‖y‖2H

(4.3.10)

Therefore a(u, v) is both bounded and coercive, so by Lax Milgram for every F ∈ H

there exists a unique solution u ∈ V. Moreover u = (u1, u3) satisfies the last two

equations in ((4.3.6)).

Next we reconstruct the remaining part of the vector U . From ((4.3.6))

y2 = λy1 − f1 ∈ D(A
1

2 ), y4 = λy3 − f3 ∈ D(B
1

2 ), ∀F ∈ H (4.3.11)

Since y3 = N∗Ay1 and f3 = N∗Af1 we conclude that y4 = N∗Ay2 , as required by

the membership in the D(A∗). The remaining regularity requirements simply follow

from the structure of equations in (4.3.6).
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In conclusion, for all F ∈ H we obtain Y = (y1, y2, y3, y4) in D(A∗) such that

(λI − A)Y = F ∈ H. Thus Y is our desired solution and we conclude that Y ∈ S.

Therefore, D(A∗) = S and A∗ = Λ.

With the adjoint computed, we can now determine whether the residual spectrum

σr(A) intersect the imaginary axis. It is well-known that an undamped wave equation

gathered its eigenvalues on the imaginary axis, thus it appears necessary to impose

some damping in order to verify that the spectrum is on the left of the imaginary

axis.

Theorem 4.3.2. Suppose that the damping condition (1.1.14) holds, i.e.

max{kΩ, kΓα, cΩ, cΓ} > 0. With A defined in (2.2.4), σ(A) ∩ iR = ∅.

Proof. Consider the spectrum of A: σ(A) = σp(A) ∪ σr(A) ∪ σc(A) where σp(A),

σr(A) and σc(A) denotes respectively the point spectrum, the residual spectrum and

the continuous spectrum of A; and show that it does not contain the imaginary axis

denoted by iR. We will proceed in three steps proving the spectral property for each

spectrum, starting with the continuous spectrum.

Step 1: σc(A) ∩ iR = ∅

We recall that, if λ ∈ σc(A), then A− λ does not have a closed range (see [22, Prob-

lem 2.54 p. 128]).
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With A as given in (2.2.4), assume that λ = ir ∈ σc(A) with r 6= 0.

∀f = [f1, f2, f3, f4]
T ∈ H, suppose that u = [u1, u2, u3, u4] ∈ D(A) such that:

(ir −A)




u1

u2

u3

u4




=




f1

f2

f3

f4




(4.3.12)

which is equivalent to:




iru1 − u2 = f1

iru3 − u4 = f3

iru2 + A(u1 −N∂nu1) + kΩA(u2 −N∂nu2) + cΩu2 = f2

iru4 + ∂nu1 + kΩ∂nu2 +Bu3 + αBu4 + cΓu4 = f4

(4.3.13)

The two last equations can be rewritten, using the first to and u3 = N∗Au1 as follows:




−r2u1 + (1 + kΩir)Au1 −AN(∂nu1 + kΩ∂nu2) + cΩiru1 = (ir + kΩA+ cΩ)f1 + f2

∂nu1 + kΩ∂nu2 = f4 + r2N∗Au1 + irN∗Af1 −BN∗Au1

−αirBN∗Au1 + αBN∗Af1 − cΓirN
∗Au1 + cΓN

∗Af1

(4.3.14)

where we used the fact that N∗Az = γ(z) from equation (2.1.9). Then, in (4.3.14),

substitute the second equation into the first one.

[
−r2 + (1 + kΩir)A+ cΩir − r2ANN∗A+ (1 + αir)ANBN∗A + cΓirANN

∗A
]
u1

= (ir + kΩA+ cΩ)f1 + f2 + AN(ir + αB + cΓ)f3 + ANf4

(4.3.15)
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Let V = D(A
1

2 ) ∩ D(B
1

2 ) with associated norm:

‖u‖V =
∣∣∣A

1

2u
∣∣∣
2

Ω
+
∣∣∣B

1

2u
∣∣∣
2

Γ1

(4.3.16)

Consider the left hand side of (4.3.15) and define the operators T,M,K : V → V ∗,

by 



T =M +K

M = A+ ANBN∗A+ ir(kΩA+ αANBN∗A)

K = −r2(I + ANN∗A) + cΩirI + cΓirANN
∗A

(4.3.17)

Also, using the right hand side of (4.3.15), define F : H ⊂ D(A
1

2 )×L2(Ω)×D(B
1

2 )×

L2(Γ1) → V ∗ by:

F =

(
(ir + kΩA), I, AN(ir + αB), AN

)
(4.3.18)

Observe that, by letting v ∈ V ∗ the third component of F is well-defined:

(αANBf3, v)[D(B
1
2 )]∗×D(B

1
2 )

= α
(
B

1

2f3, B
1

2N∗Av
)

L2(Γ1)

≤ α
∣∣∣B

1

2 f3

∣∣∣
2

Γ1

∣∣∣B
1

2 v|Γ1

∣∣∣
2

Γ1

(4.3.19)

Since f3 ∈ D(B
1

2 ), then αANBf3 ∈ [D(A
1

2 )]∗.

Similary, the other components of F can be bounded appropriately. Hereby, F is well

defined. Therefore, we obtain:

|F (V )| ≤ C ‖F‖H ‖v‖V ∗
(4.3.20)

It remains to show that T is invertible, we will proceed in three steps.

Step 1-a: Compactness of K
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By definition of A, N and N∗A, K is compact from D(A
1

2 ) into its dual.

Step 1-b: M is boundedly invertible.

Given M, u ∈ V and v ∈ V ∗, define its bilinear form M(., .), by:

M(u, v) = (1 + kΩir)
(
A

1

2u,A
1

2v
)

Ω
+ (1 + αir)

〈
B

1

2N∗Au,B
1

2N∗Av
〉

Γ1

(4.3.21)

Then M(., .) is a coercive and bounded bilinear form, setting KM = max{1, kΩr +

αr}:

|M(u, v)| ≤ KM

[∣∣∣A
1

2u
∣∣∣
2

Ω

∣∣∣A
1

2v
∣∣∣
2

Ω
+
∣∣∣B

1

2N∗Au
∣∣∣
2

Γ1

∣∣∣B
1

2N∗Av
∣∣∣
2

Γ1

]

≤ C ‖u‖V ‖v‖V by (4.3.16)

(4.3.22)

Re|M(u, u)| =
∣∣∣A

1

2u
∣∣∣
2

Ω
+
∣∣∣B

1

2N∗Au
∣∣∣
2

Γ1

+ kΩr
∣∣∣A

1

2u
∣∣∣
2

Ω
+ αr

∣∣∣B
1

2N∗Au
∣∣∣
2

Γ1

≥ C(
∣∣∣A

1

2u
∣∣∣
2

Ω
+
∣∣∣B

1

2uΓ1

∣∣∣
2

Γ1

) = C ‖u‖V
(4.3.23)

Therefore by Lax-Milgram, the operator M is boundedly invertible. By the Fredholm’s

alternative, we deduce the desired invertibility of T provided that T is injective.

Step 1-c: T is injective.

Suppose that Tu1 = 0, assume that r 6= 0 and take the duality pairing with respect

to v = u1 ∈ V ∗, then:
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0 = ((M +K)u1, v)[D(A
1
2 )]∗×D(A

1
2 )

= ((A+ ANBN∗A)u1, v)[D(A
1
2 )]∗×D(A

1
2 )
+ ir ((kΩA+ αANBN∗A)u1, v)[D(A

1
2 )]∗×D(A

1
2 )

− r2 ((I + ANN∗A)u1, v)[D(A
1
2 )]∗×D(A

1
2 )
+ ir ((cΩI + cΓANN

∗A)u1, v)[D(A
1
2 )]∗×D(A

1
2 )

= −r2 |u1|2Ω +
∣∣∣A

1

2u1

∣∣∣
2

Ω
− r2 |N∗Au1|2Γ1

+
∣∣∣B

1

2N∗Au1

∣∣∣
2

Γ1

+ ir

[
cΩ |u1|2Ω + kΩ

∣∣∣A
1

2u1

∣∣∣
2

Ω
+ cΓ |N∗Au1|2Γ1

+ α
∣∣∣B

1

2N∗Au1

∣∣∣
2

Γ1

]

(4.3.24)

Taking the imaginary part in (4.3.24) implies u1 = 0. Thus T is injective. Note that

the injectivity does not necessarly hold if we do not impose the damping condition

(1.1.14).

Thus, T is invertible which achieves the proof of the first step: σc(A) ∩ iR = ∅.

Step 2: σp(A) ∩ iR = ∅

With A as given in (2.2.4), if for r ∈ R and r 6= 0, there exists u = [u1, u2, u3, u4]T ∈

D(A) such that:

A




u1

u2

u3

u4




= ir




u1

u2

u3

u4




(4.3.25)



108

which is equivalent to:





u2 = iru1

u4 = iru3

iru2 + A(u1 −N∂nu1) + kΩA(u2 −N∂nu2) + cΩu2 = 0

iru4 + ∂nu1 + kΩ∂nu2 +Bu3 + αBu4 + cΓu4 = 0

(4.3.26)

Observe that (4.3.26) is equivalent to Tu1 = 0. Then, in step 1, we have already

shown that u1 = 0 which achieves the proof for step 2.

Step 3: σr(A) ∩ iR = ∅

First we recall that, If the eigenvalue λ ∈ C is in the residual spectrum of A, then

λ ∈ σp(A∗) (see [22, p. 127]).

With A∗ as given in (4.3.1), if for r ∈ R and r 6= 0, there exists u = [u1, u2, u3, u4]T ∈

D(A∗) such that:

A∗




u1

u2

u3

u4




= ir




u1

u2

u3

u4




(4.3.27)
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which is equivalent to:





−u2 = iru1

−u4 = iru3

Au1 −AN∂nu1 − kΩAu2 + kΩAN∂nu2 − cΩu2 = iru2

∂nu1 − kΩ∂nu2 +Bu3 − αBu4 − cΓu4 = iru4

(4.3.28)

Proceeding as in (4.3.14) and (4.3.15), then (4.3.28) can also be written as Tu1 = 0,

which again implies that u1 = 0, by step 1.

Therefore, the residual spectrum does not intersect the imaginary axis which com-

pletes the proof of theorem 4.3.2
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Chapter 5

Stabilization and Uniform Decay

Rates

In the previous section we classified the strongly continuous semigroups according to

their regularity properties, this section will be devoted to their asymptotic behavior.

In other words, we would like to know the behavior of the semigroup {eAt}t≥0 for

large t > 0.

The spectral property from theorem 4.3.2 already provides us a result about the

stability of the model (GM). Indeed, one can immediately claim the strong stability

provided the damping condition (1.1.14) in the system using the well-known and

useful result by Arendt-Batty.

Theorem F (Stability Theorem 2.4 in [3]). Let T (t) be a bounded C0-semigroup with

generator A. Assume that σr(A) ∩ iR = ∅. If σ(A) ∩ iR is countable, then T (t) is

strongly stable. This is to say; for every u ∈ H

∥∥eAtu
∥∥
H
→ 0, t→ ∞

In addition, for analytic semigroup, the spectral property from theorem 4.3.2
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provide exponential stability:

Theorem G (Theorem 4.4.3 - [49]). Let A be the generator of an analytic semigroup

T (t). If

sup{Reλ : λ ∈ σ(A)} < 0 (5.0.1)

then there are constants M ≥ 1 and µ > 0 such that ‖T (t)‖≤Me−µt, i.e. T (t) is

exponentially stable.

We also note that with the resolvent approach in theorem 4.1.2, analyticity was

obtained provided the exponential stability of the semigroup {eAt}t≥0 (see assump-

tion 4.1.1), thus in order to relax this assumption, it is necessary to demonstrate the

exponential stability not being a consequence of the analyticity which is one of the

purpose of theorem 5.1.1. The following diagram (figure 5)recapitulates the connex-

ions between the theorems.

Although the exponential stability is reached in the case of analytic semigroup for

the model (GM), which relies on the positivity of the interior viscoelastic damping

(kΩ > 0) and either kΓ = 0 or kΓα > 0 (assumption 4.1.3), it remains to investigate if

it can also be reached with strong damping only in the interior or on the boundary,

or with only frictional damping. This is the second purpose of theorem 5.1.1 in which

we will consider energy methods to determine the conditions under which the model

(GM) is exponentially stable.

Once the conditions of exponential stability are identified for the model (GM), the
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Analyticity
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Figure 5.1: Diagram: Relationship between exponential stability and analyticity

aim of this chapter is also to highlight an interesting phenomenon first discovered by

Littman and Markus in [40],[39] for the Scole model enlighting exponential stabil-

ity failed in the absence of interior damping in the presence of inertial terms on the

boundary.

5.1 Exponential Stability

We start by describing the conditions under which the exponential stability property

will holds for model (GM):

1. Viscoelastic damping in the interior

kΩ > 0 (5.1.1)
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2. No viscoelastic damping in the interior

a Frictional damping in the interior and on the boundary

cΩ, cΓ > 0 (5.1.2)

b Frictional damping in the interior and viscoelastic damping on the bound-

ary

cΩ, kΓα > 0 (5.1.3)

We are now ready to present the main result of this chapter:

Theorem 5.1.1. Consider the operator A given in (2.2.4). Suppose that (5.1.1),

(5.1.2) or (5.1.3) holds. Then the C0-semigroup {eAt}t≥0 is exponentially stable, i.e.,

∃C, ω ≥ 0 such that
∥∥eAtu

∥∥
H
≤ Ce−ωt ‖u‖H , t > 0

Proof. To begin with, let’s display the model (GM):





utt + cΩut − kΩ∆ut −∆u = 0 x ∈ Ω, t > 0

u(x, t) = 0 x ∈ Γ0, t > 0

utt + cΓut + ∂n(u+ kΩut)− kΓ∆Γ(αut + u) = 0 x ∈ Γ1, t > 0

u(0, x) = u0, ut(0, x) = u1 x ∈ Ω

(GM)

By [49, Theorem 4.4.1], to show the exponential stability of {eAt}t≥0 it is enough to

show that

∫ T

0

∥∥eAtU
∥∥2
H
ds <∞ (5.1.4)
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where A is given in (2.2.4) and we display again for reference the energy space H

from (2.2.2)

H = {(u1, u2, u3, u4) ∈ D(A
1

2 )× L2(Ω)×D(B
1

2 )× L2(Γ1), u1|Γ1
= u3}

where D(A
1

2 ) = H1
Γ0
(Ω) and D(B

1

2 ) ∼






H1(Γ) if kΓ > 0

L2(Γ) if kΓ = 0

We recall that B = −kΓ∆Γz (see definition 2.1.3).

Multiply by ut the first equation of (GM):

(utt, ut)Ω + kΩ |∇ut|2Ω + cΩ |ut|2Ω + (∇u,∇ut)Ω

+ 〈utt, ut〉Γ1
+ kΓα |∇Γut|2Γ1

+ cΓ |ut|2Γ1
+ kΓ (∇Γu,∇Γut)Ω = 0

Therefore, after rearranging the terms, we get:

1

2

d

dt

(
|ut|2Ω + |∇u|2Ω + |ut|2Γ1

+ kΓ |∇Γu|2Γ1

)

= −kΩ |∇ut|2Ω − cΩ |ut|2Ω − kΓα |∇Γut|2Γ1
− cΓ |ut|2Γ1

(5.1.5)

Let Ep(t) = |∇u|2Ω + kΓ |∇Γu|2Γ1
, Ek(t) = |ut|2Ω + |ut|2Γ1

be the potential and kinetic

energy respectively, then define the energy of this system as the summation of the

potential and kinetic energies:

E(t) = Ep(t) + Ek(t)

Note that the potential energy may only consists of potential interior energy if kΓ = 0,

in which case the third component in the energy space is in L2(Γ1) following our

defintion of B. Using these definitions, we obtain the following energy equality after
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integrating in time (5.1.5):

E(0) = E(t) + 2

∫ t

0

kΩ |∇ut|2Ω + cΩ |ut|2Ω + kΓα |∇Γut|2Γ1
+ cΓ |ut|2Γ1

ds (5.1.6)

Now multiply by u the first equation of (GM) and again integrate in space:

(utt, u)Ω + kΩ (∇ut,∇u)Ω + cΩ (ut,∇u)Ω + |∇u|2Ω

+ 〈utt, u〉Γ1
+ kΓα 〈∇Γut,∇Γu〉Γ1

+ cΓ 〈ut, u〉Γ1
+ kΓ |∇Γu|2Ω = 0

(5.1.7)

Integrate in time, and use integration by parts:
∫ t

0

− |ut|2Ω − |ut|2Γ1
+ |∇u|2Ω + kΓ |∇Γu|2Γ1

ds = (ut, u)Ω |0t + 〈ut, u〉Γ1
|0t

+

∫ 0

t

1

2

d

dt

(
kΩ |∇u|2Ω + cΩ |u|2Ω + kΓα |∇Γu|2Γ1

+ cΓ |u|2Γ1

)
ds

(5.1.8)

In (5.1.8), we identify the potential energy on the left hand side and we define F to

be the right hand side:

F =

[
1

2
(kΩ |∇u|2Ω + cΩ |u|2Ω + kΓα |∇Γu|2Γ1

+ cΓ |u|2Γ1
) + (ut, u)Ω + 〈ut, u〉Γ1

]∣∣∣∣
0

t

(5.1.9)

Thus,

∫ t

0

Ep(s)ds ≤
∫ t

0

|ut|2Ω + |ut|2Γ1
ds+ F (5.1.10)

Then, add
∫ t

0
Ek(s)ds on both sides of (5.1.10):

∫ t

0

∥∥eAtU
∥∥2
H
ds =

∫ t

0

Ep(s) + Ek(s)ds ≤ 2

∫ t

0

|ut|2Ω + |ut|2Γ1
ds+ F (5.1.11)

Thus, it remains to bound the right hand side (5.1.11).

Before, we recall Poincare’s inequality from proposition 2.1.2

|ut|2Ω ≤ Cp |∇ut|2Ω , because u = 0 on Γ0



116

where Cp is the Poincaré’s constant. Also, recall the trace moment inequality from

proposition 2.1.6 (see [8]):

|ut|2Γ1
≤ C|∇ut|

1

2

Ω|ut|
1

2

Ω

≤ Cm |∇ut|2Ω
(5.1.12)

where Cm = C × Cp is the trace moment constant. These two constants will often

be used in the following estimates and their presence will show the application of the

corresponding inequality.

Also define K as the maximum of the damping coefficients and 1, i.e.,

K = max{kΩ, cΩ, kΓα, cΓ, 1}

Therefore, the term F defined in (5.1.9) can be bounded as follows:

F ≤ K
(
|∇u(0)|2Ω + Cp |∇u(0)|2Ω + |∇Γu(0)|2Γ1

+ Cm |∇u(0)|2Ω
)

+ 2 |u(0)|2Ω + 2 |u(0)|2Γ1
+ 2 |ut(0)|2Ω + 2 |ut(0)|2Γ1

≤ K (Ep(0) + Cp,mEp(0)) + 2
(
Cp |∇u(0)|2Ω + Cm |∇u(0)|2Ω + Ek(0)

)

≤ (K + Cp,mK + 2Cp,m)Ep(0) + 2Ek(0)

≤ CK,p,mE(0)

(5.1.13)

It remains to bound the integral
∫ t

0
|ut|2Ω+|ut|2Γ1

ds in (5.1.10) and this will be achieved

using the energy identity (5.1.6).

Part 1: kΩ > 0
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By the energy identity(5.1.6), we get:

∫ t

0

|ut|2Ω + |ut|2Γ1
ds ≤

∫ t

0

Cp |∇ut|2Ω + Cm |∇ut|2Ω ds

≤ Cp,m

2kΩ
E(0)

(5.1.14)

Note that depending on the positivity of the coefficients cΩ, cΓ and kΓα, it is possible

to get a sharper estimate.

Part 2: kΩ = 0

We note that in this configuration, it is necessary to have cΩ > 0 otherwise it is

impossible to estimate the term |ut|2Ω.

Case 1: cΓ > 0

Define c = min{cΩ, cΓ}, then cΩ
c
, cΓ

c
≥ 1. By the energy identity(5.1.6), we get:

∫ t

0

|ut|2Ω + |ut|2Γ1
ds ≤

∫ t

0

cΩ
c
|ut|2Ω +

cΓ
c
|ut|2Γ1

ds

≤ 1

c

∫ t

0

cΩ |ut|2Ω + cΓ |ut|2Γ1
ds

≤ 1

2c
E(0)

(5.1.15)

Note that this estimate suggests a relationship between the frictional dampings:

cΩ = cΓ.

Case 2: cΓ = 0

When cΓ and kΩ equal zero, then the control on |ut|2Γ1
must be achieved using

|∇ut|2Γ1
. Since this term is associated with kΓα, we must impose the strict posi-

tivity of kΓα. Indeed, one could apply the Poincaré’s inequality on the boundary:
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|ut|2Γ1
≤ Cp,Γ1

|∇Γut|2Γ1
; without loss of generality we assume that Cp,Γ1

≥ 1. Define

c = min{kΓα, cΩ}, it follows that the estimate of |ut|2Ω + |ut|2Γ1
is given by:

∫ t

0

|ut|2Ω + |ut|2Γ1
ds ≤ Cp,Γ1

∫ t

0

cΩ
c
|ut|2Ω +

kΓα

c
|∇Γut|2Γ1

ds

≤ Cp,Γ1

2c
E(0)

(5.1.16)

From estimates (5.1.14), (5.1.15) and (5.1.16), it follows that the left hand side of

(5.1.11) is finite:

∫ t

0

∥∥eAtU
∥∥2
H
ds ≤ 2

∫ t

0

|ut|2Ω + |ut|2Γ1
ds+ F <∞ (5.1.17)

As a consequence, by [49, Theorem 4.4.1], the semigroup {eAt}t≥0 is exponentially

stable, provided the appropriate conditions on the damping coefficients, i.e., one of

the following must hold:

• Viscoelastic damping in the interior (kΩ > 0), (5.1.1)

• Frictional damping in the interior and on the boundary (cΩ, cΓ > 0), (5.1.2)

• Frictional damping in the interior and viscoelastic on the boundary (cΩ, kΓα),

(5.1.3)

5.2 Strong Stability

We recall that, provided some damping in the system (GM), iR is not a subset of the

spectrum of A (theorem 4.3.2), thus the strongly continuous semigroup {eAt}t≥0, gov-
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erning (GM) generated in theorem 2.3.1, is strongly stable by the stability theorem

from Arendt-Batty theorem ([3, Theorem 2.4] cited in theorem F [p. 110]). In this

section, we examine the cases where {eAt}t≥0 is not exponentially stable under theo-

rem 5.1.1. It is not our aim to demonstrate that this property does not hold but to

provide the reader with arguments suggesting that only strong stability holds. With

assumptions (5.1.1), (5.1.2) and (5.1.3) from exponential stability theorem 5.1.1, we

can identify precisely the cases where exponential stability is not expected.

Firstly, in the absence of interior damping (cΩ = kΩ = 0) our model (GM) ressembles

the Scole model (5.2.1) studied in the late 80’s by Littman and Markus in [39, 40]:





wtt − wxxxx = 0 x ∈ Ω, t > 0

w(0, t) = 0, wx(0, t) = 0 (clamped at x = 0)

µ1wtt(1, t)− wxxx(1, t) = f1 (linked at x = 1)

µ2wxtt(1, t) + wxx(1, t) = f2 x ∈ Ω

(5.2.1)

After demonstrating asymptotic stability (see [40, section 4]), the authors examine

the rate of decay of a solution w(x, t) under dissipative feedback boundary damping:





f1 = wt(1, t)

f2 = wxt(1, t)

(5.2.2)

and prove the existence of solutions with arbitrarily slow decay towards zero([40,

theorem 5.3]). The important common facts between the Scole model and (GM)

explaining the non-exponential decay are the absence of damping in the interior and

the presence of inertial terms on the boundary. While boundary stabilization usu-
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ally leads to exponential stability, this is so for models without inertial terms on the

boundary.

Similarly to the figure 1.5 [p. 21], figure 5.2 shows the spectrum of model (GM)

without interior damping but with both frictional and viscoelastic damping on the

boundary. We observe the circle described by eigenvalues coming from the parabolic

behavior of the boundary (kΓα > 0) along with a vertical component tending to the

imaginary axis as the eigenvalue’s imaginary part goes to infinity, which is character-

istic of ’non-exponential / strong’ stability.

kΓ = 1

kΩ = 0

α = 0.1

cΩ = 0

cΓ = 1

Imaginary Axis

Real Axis   

14i

0−12







utt + cΩut − kΩ∆ut −∆u = 0 on Ω

utt + cΓut +
δ(kΩut+u)

δη
− kΓ∆Γ(αut + u) = 0 on Γ1

u = 0 on Γ0

Imaginary Axis

14i

0

Figure 5.2: Spectrum of a non-exponentially / strongly stable semigroup I. Eigenvalues

for the model (GM) without interior damping (cΩ = 0 and kΓα, cΓ > 0).
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Secondly, if the interior damping is only frictional (kΩ = 0 and cΩ > 0), as-

sumptions (5.1.2) and (5.1.3) suggests the necessity of boundary damping to achieve

exponential stability. Hereby, if both boundary dampings are null which is covered

by two cases: cΓ = α = 0 and cΓ = kΓ = 0, the resulting spectrums are very similar

(figure 5.3). For this reason, we only show the second case.

Imaginary Axis

Real Axis   

24i

0−0.3







utt + cΩut − kΩ∆ut −∆u = 0 on Ω

utt + cΓut +
δ(kΩut+u)

δη
− kΓ∆Γ(αut + u) = 0 on Γ1

u = 0 on Γ0

kΓ = 0

kΩ = 0

α = 0

cΩ = 1

cΓ = 0

Figure 5.3: Spectrum of a non-exponentially / strongly stable semigroup II. Eigenval-

ues for the model (FM) without interior damping (cΩ > 0 and all other coefficients

set to zero.

Given the same geometrical conditions, figure 5.3 shows two spectrums for (GM)

with only interior frictional damping (cΩ = 1 and kΩ, kΓ, α, cΓ = 0) but with different

meshing: the red spectrum (81 nodes meshing) corresponds to a finer meshing than
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the green one (36 nodes meshing), i.e., as we tend to the continuous case the right

component streches horizontally and tends to the imaginary axis suggesting again

’non-exponential / strong’ stability. We also observe a well-known behavior: eigen-

values tend to form a vertical asymptote characteristic to the frictional damping (see

figure 1.1 [p. 16]). We note that numerically this scenario is not obvious to interpret

and larger computation capacity would be useful.

In order to provide more insight about this phenomenon we address a final consider-

ation with the following system:




utt + cΩut −∆u = 0 x ∈ Ω, t > 0

u(x, t) = 0 x ∈ Γ0, t > 0

mutt + cΓut + ∂nu = 0 x ∈ Γ1, t > 0

u(0, x) = u0, ut(0, x) = u1 x ∈ Ω

(STG)

where m is the mass coefficient on the boundary Γ1. Note that (STG) is equivalent

to (GM) by setting kΩ, kΓ = 0, m = 1.

First of all, let’s observe how the inertial term on the boundary, controlled by m

modifies the spectrum of (STG). We start with the set-up from the previous figure

(figure 5.3 - m = 1, cΩ = 1, cΓ, kΓ = 0), represented in red in figure 5.4. As m tends

to zero, we notice that the spectrum gets closer to the vertical asymptote in green

corresponding to the limit case m = 0, i.e., a damped wave equation with 0-Dirichlet

and Neumann boundary conditions. The blue and black spectrums are associated
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kΓ = 0

cΩ = 1

cΓ = 0

m = 1

kΓ = 0

cΩ = 1

cΓ = 0

m = 0.07

kΓ = 0

cΩ = 1

cΓ = 0

m = 0.01

kΓ = 0

cΩ = 1

cΓ = 0

m = 0

Imaginary Axis

Real Axis   

13i

0−0.3







utt + cΩut =∆u on Ω

mutt + cΓut +
du
dη

− kΓ∆Γu = 0 on Γ1

u = 0 on Γ0

Figure 5.4: Effect of the boundary mass coefficient on the spectrum of an damped

wave equation with DBC. Eigenvalues for the model (STG) with cΩ = 1, cΓ = 0 and

m = 1 (in red), 0.07 (in blue), 0.01 (in black), 0 (in green)

with intermediate values of the mass coefficient m, i.e., m = 0.01 and m = 0.07

respectively.

After illustrating this loss of stability, we would like to go back the other direction to

recover the exponential stability keeping the inertial term on the boundary (m = 1).

We noticed in the proof of exponential stability (theorem 5.1.1) first the necessicity of

boundary damping to control the boundary inertial term, and second the relationship

between cΩ and cΓ in the energy estimate (5.1.15).

With the introduction of the coefficient m on the boundary, figure 5.5 illustrates what
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should be the interplay between the mass coefficient m and the damping coefficients

cΩ and cΓ. Given a value for the interior damping cΩ and the mass coefficient m,

the question we address is the following: how much boundary damping is necessary

to obtain an ideal spectrum ? By ideal spectrum, we mean a spectrum with only a

vertical asymptote as for the damped wave equation with Dirichlet and/or Neumann

boundary conditions. Let cΩ = 0.5 and m = 3, then figure 5.5 shows that the ideal

spectrum is attained for cΓ = 1.5 (black spectrum). The spectrums for cΓ = 0 and

cΓ = 2.5 are respectively plotted in red and blue. The relationship enlighted by the

experience, which also holds for any other couples (cΩ, m) such that cΩ, m > 0, is the

following:

cΓ = cΩ ×m (5.2.3)

This observation suggests that the dynamics driving this problem are strongly

coupled with the dynamics of the Wentzell problem. Indeed, for all scenarii where

the equation (5.2.3) holds the change of variable z = u+ cΩut allows to treat (STG)

as a heat equation with unperturbed Wentzell boundary conditions:

mz + ∂nu = 0

Remark 5.2.1. This change of variable is very similar to the one we used in the

proof for analyticity with the Wentzell approach (theorem 4.1.4 - equation (4.1.16)).

Although we only used the Wentzell approach to study analyticity, the dynamics

governing the wave equation with dynamic boundary conditions (GM) are highly
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kΓ = 0

cΩ = 0.5

cΓ = 0

m = 3

kΓ = 0

cΩ = 0.5

cΓ = 1.5

m = 3

kΓ = 0

cΩ = 0.5

cΓ = 2.5

m = 3

Imaginary Axis

Real Axis   
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0−0.25







utt + cΩut =∆u on Ω

mutt + cΓut +
du
dη

− kΓ∆Γu = 0 on Γ1

u = 0 on Γ0

Figure 5.5: Effect of the boundary frictional damping. Eigenvalues for the model

(STG) with cΩ = 0.5, m = 3 and cΓ = 0 → 2.5

related to the one of the Wentzell problem and other properties for the Wentzell

problems about stability, decay rates for instance should be applicable to this type of

problems.



126

Chapter 6

Optimal growth bound

The aim of this chapter is to summarize the results obtained during this dissertation

and provide an interesting interaction between the theoretical results about analyt-

icity (chapter 4) and exponential stability (chapter 5), and the numerical scheme

(chapter 3). Firstly, we recall that for a strongly continuous semigroup {eAt}t≥0

generated by A, we call:

ω0 := ω0(e
At) = inf{ω > 0 : ∃M ≥ 1 such that

∥∥eAt
∥∥ < Meωt, ∀t > 0} (6.0.1)

its growth bound. Moreover, if it is a semigroup of contraction, the setting ω0 = 0 and

M = 1 is possible. If the stability is exponential then the growth bound is negative.

However, it is often complicated to calculate the growth bound directly. It is a well-

established procedure to calculate or to estimate the spectrum of the generator A

and to try to relate the location of the spectrum to the asymptotic behaviour of the

solution. For this purpose, we introduce the notion of spectral bound:

s(A) = sup{Re(λ) : λ ∈ σ(A)} (6.0.2)
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In general we only have:

s(A) ≤ ω0(e
At) (6.0.3)

In some cases, whenever there is a suitable spectral mapping theorem for the semi-

group, i.e.,

etσ(A) = σ(eAt)− {0}, t ≥ 0

the principle of linear stability holds:

s(A) = ω0(e
At) (6.0.4)

This principle holds not only for finite-dimensional cases, but also for a wide variety

of semigroups, in particular analytic semigroup. Indeed, in [16], the authors proved

the following:

Theorem H (Corollary IV.3.11 and Corollary IV.2.4 in [16]). For a uniformly contin-

uous semigroup ([16, Corollary IV.2.4]) or an eventually norm continuous semigroup

([16, Corollary IV.3.11]), {eAt}t≥0 and its generator A, one has s(A) = ω0(e
At).

More precisely, one characterization of norm-continuous semigroup of our interest is

([16, p. 115]):

Proposition 6.0.1. Let A be the generator of a uniformly exponentially stable strongly

continuous semigroup {eAt}t≥0 on a Hilbert space H. Then {eAt}t≥0 is immediately

norm-continuous if and only if

lim
|β|→∞

‖R(iβ,A)‖ = 0
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From this definition, it follows that whenever the operator A governing (GM) is

analytic or Gevrey (see chapter 4), it is immediately norm-continuous. Indeed, the

exponential stability always holds in these two cases since the interior viscoelastic

damping is strictly positive (kΩ > 0). See theorem 5.1.1 [p. 113].

It is known that ”more damping” does not mean more decays. The phenomenon

of overdamping is well known both in practice (engineering) and in theory (mathe-

matics). This motivates our interest in studying the balance between the competing

damping mechanisms in the interior Ω and on the boundary Γ1 and thus determine

the optimal damping. Indeed, for a given system, the optimal damping extracts as

much energy as possible from the system, meaning that the growth bound is as small

as possible. In [21], [58, Chapter 13, 21], the version of linear stability is expressed

by the so-called spectral absissa criterion which requires the minimization of:

min
i

|Re(λi)| (6.0.5)

where λi are the eigenvalues of the associated system. In fact, we use this criterion

to approximate the spectral bound and thus the growth bound.

6.1 Impact of each damping mechanism

To begin with, the impact of the viscoelastic coefficients kΩ, kΓα have been well de-

scribed already and could be summarized by:
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• the presence of viscoelastic damping in the interior guarantees the semigroup

to be analytic or Gevrey, implying smoothing properties for the solution.

• the presence of viscoelastic damping both in the interior and the boundary makes

the semigroup {eAt}t≥0 analytic on Hp.

• the coefficients kΩ and kΓα are inversely proportional to the radius of the circle

formed by the eigenvalues (see figure 1.4 [p. 20])

Although, the growth bound can be estimated if kΩ > 0, we have already observed

(see figures 1.3 [p. 19] and 1.4 [p. 20]) the variation of the viscoelastic coefficients does

not modify the spectral bound, thus the growth bound, since the eigenvalues form a

circle almost tangent to the imaginary axis, implying a constant spectral bound for

any values of the viscoelastic coefficients.

Moreover, we have already noticed, in 1.1 [p. 16], that in the absence of viscoelas-

tic dampings (kΩ, α = 0), the variation of the frictional coefficients causes the shift of

the vertical asymptote formed by the eigenvalues associated with the hyperbolic sys-

tem (FM). Although the semigroup governing this system is not norm-continuous,

implying that the investigation of the growth bound by the spectral bound is not

relevant (see equation (6.0.3)), the understanding of the impact of cΩ and cΓ on the

eigenvalues’ behavior in the absence of the viscoelastic dampings (kΩ, α = 0) may

help to determine the optimal growth bound in the presence of viscoelastic dampings
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(kΩ, α > 0).

We refer the reader to the proof of exponential stability (theorem 5.1.1 in Part 2,

case 2), where we mentioned that the relationship cΩ = cΓ lowers the estimate on

∫ s

0

∥∥eAtu
∥∥2
H
ds. This observation can be linked to figure 6.1 as well. Given a value

kΓ = 1
cΩ = 2
cΓ = 0.4

kΓ = 1
cΩ = 2
cΓ = 2

kΓ = 1
cΩ = 2
cΓ = 2.8

Imaginary Axis

Real Axis   

8.3i

0−1.3







utt + cΩut =∆u on Ω

utt + cΓut +
du
dη

− kΓ∆Γu = 0 on Γ1

u = 0 on Γ0

0 0.5 1 1.5 2 2.5 3 3.5 4

−1

−0.8

−0.6

−0.4

−0.2

0

Spectral bound s(A) in function of cΓ

Figure 6.1: Optimal spectral bound for a hyperbolic system. Upper graph: optimal

spectral bound in function of cΓ. Lower graph: eigenvalues for the model (FM) with

a fixed cΩ and cΓ running from 0 to 2cΩ, cΓ = 0.4 (red), 2 (black), 2.8 (blue).

of the interior frictional damping cΩ, the coefficient cΓ runs from 0 to 2cΩ. On fig-

ure 6.1, the lower graph represents the spectrum for 3 different values of cΩ. The

red spectrum is associated with a small value of the boundary damping (cΓ = 0.2)

compared to the interior damping (cΩ = 2); as cΓ gets closer to cΩ, we observed
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that the eigenvalues tend to form a vertical asymptote (black spectrum on the lower

graph) making the spectral bound reaches its minimum (s(A) = −1). The upper

graph represents the spectral bound in function of cΓ, enlighting the spectral bound

for the three spectrums with their respective colors. The optimal spectral bound is

attained at cΩ = cΓ. As the boundary damping cΓ keeps increasing the first lower

modes (eigenvalues with small imaginary part’s absolute value) hit the real axis, then

one tends to negative infinity while its conjugate moves back to the imaginary axis,

implying a smaller spectral bound and thus a possible overdamping. We recall that

the the semigroup governing this system is not norm continuous (hyperbolic system),

hereby, the spectral bound is not a criterion to determine overdamping.

6.2 Optimal growth bound

Consider (GM) with all coefficients strictly positive (cΩ, cΓ, kΩ, kΓα > 0), we expect

to get the optimal growth bound for this parabolic problem by adding the same

amount of frictional damping in the interior and on the boundary in our model (GM)

reminding some possible overdamping if cΩ and cΓ are too large (see figure 1.1 [p. 16]).

Our choice for the values of kΩ and kΓα do not have a physical interpretation. Without

loss of generality, assume that kΩ = α = 0.1 and kΓ = 1, the consequence in the seek

of optimal growth bound is not affected by this assumption however this allows a

better readability of the figures. The figure 6.2 represents, on the lower graph, the
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spectrum of (GM) for:

• cΩ = cΓ = 0.1 in red

• cΩ = cΓ = 1.9 in black

• cΩ = cΓ = 2.8 in blue

The upper graph shows the spectral bound in function of cΩ and cΓ under the as-

sumption that cΩ = cΓ. The spectral bound occurs for cΩ = cΓ ∼ 1.9. The spectrum

is shifted to the left (eigenvalues’ real part decreases) as the frictional coefficients

increase to 1.9.

While most of the eigenvalues are still shifted to the left as the frictional dampings

get larger than 1.8, we remark that purely real eigenvalues appear on the right of the

circle and tend to the imaginary axis making the spectral bound increases, suggest-

ing overdamping. The figure 6.3 enlights the exact same pattern in the absence of

boundary viscoelastic damping. We recall that the semigroup governing this system

is supposedly Gevrey. The circles described by the eigenvalues are not fully displayed

in order to observe the shift of the parabola. On the blue spectrum (cΩ = cΓ = 3.6),

we observe the appearance of an eigenvalue, denoted by the big dot in blue, moving

back to the imaginary axis inducing the increase of the growth bound.

Similarly to the pure frictional case (kΩ = α = 0 - see figure 1.1 [p. 16]), the absolute

value of the eigenvalues’ imaginary part are squizzed, which is observed on figure 6.2
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cΩ = 3.6

cΓ = 3.6
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utt + cΩut − kΩ∆ut −∆u = 0 on Ω

utt + cΓut +
δ(kΩut+u)

δη
− kΓ∆Γ(αut + u) = 0 on Γ1

u = 0 on Γ0
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Spectral bound s(A) in function of cΩ and cΓ

Figure 6.2: Optimal growth bound for an analytic semigroup. Upper graph: growth

bound in function of cΩ = cΓ = 0 → 4. Lower graph: eigenvalues for the model (GM)

with kΩ = kΓα = 0.1 and cΩ = cΓ = 0.4 (red), 1.7 (black), 2.8 (blue).

by the shrink of the circle’s radius. An important fact is that the center of the circle

remains at the same location, in the present case at −10+0× i, which is − 1
kΩ

= − 1
α
.

Thus, the center of circle is still uniquely determined by the viscoelastic dampings

while the radius of the circle is affected by the presence of frictional damping. More

importantly the shifting property of the frictional damping is preserved making pos-

sible the determination of the optimal growth bound. For both cases, the optimal

growth bound is reached for cΩ = cΓ ∼ 1.8 and s(A) = ω0(A) = 1.
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Figure 6.3: Optimal growth bound for a Gevrey semigroup. Upper graph: growth

bound in function of cΩ = cΓ = 0 → 4. Lower graph: eigenvalues for the model

(GM) with kΩ = 0.05, kΓ = 1, α = 0 and cΩ = cΓ = 0.2 (red), 1.8 (black), 3.6 (blue).
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